prepare_grid_combinations#
API documentation for tradeexecutor.backtest.grid_search.prepare_grid_combinations Python function.
- prepare_grid_combinations(parameters, result_path, clear_cached_results=False, marker_file='README-GRID-SEARCH.md', create_indicators=None, strategy_universe=None, execution_context=<ExecutionContext backtesting, unspecified engine version>)[source]#
- Get iterable search matrix of all parameter combinations. - Make sure we preverse the original order of the grid search parameters. 
- Set up the folder to store the results 
 - Parameters:
- parameters (Union[Dict[str, List[Any]], type]) – - A grid of parameters we will search. - Can be a dict or a class of which all members will be enumerated. 
- result_path (Path) – A folder where resulting state files will be stored. 
- clear_cached_results – - Clear any existing result files from the saved result cache. - You need to do this if you change the strategy logic outside the given combination parameters, as the framework will otherwise serve you the old cached results. 
- marker_file – Safety to prevent novice users to nuke their hard disk with this command. 
- create_indicators (tradeexecutor.strategy.pandas_trader.indicator.CreateIndicatorsProtocolV1 | tradeexecutor.strategy.pandas_trader.indicator.CreateIndicatorsProtocolV2 | None) – Pass create_indicators function if you want your grid seacrh to use fast cached indicators. 
- strategy_universe (tradeexecutor.strategy.trading_strategy_universe.TradingStrategyUniverse | None) – Needed with create_indicators 
- execution_context (ExecutionContext) – Tell if we are running unit testing or real backtesting. 
 
- Returns:
- List of all combinations we need to search through 
- Return type: