Stochastic ETH-BTC beta
A breakout strategy for ETH and BTC using Stochastic RSI indicators
Source code
The source code of the Stochastic ETH-BTC strategy
"""ETH/BTC stochastic trading strategy.
To backtest this strategy module using Docker compose:
.. code-block:: console
source scripts/set-latest-tag-gcp.sh
docker-compose run ethereum-btc-eth-stoch-rsi backtest
Or locally in the dev environment:
.. code-block:: console
trade-executor \
backtest \
--strategy-file=strategy/enzyme-ethereum-btc-eth-stoch-rsi.py \
--trading-strategy-api-key=$TRADING_STRATEGY_API_KEY
"""
import datetime
import logging
import pandas_ta
from tradeexecutor.state.trade import TradeExecution
from tradeexecutor.state.visualisation import PlotKind
from tradeexecutor.strategy.cycle import CycleDuration
from tradeexecutor.strategy.default_routing_options import TradeRouting
from tradeexecutor.strategy.execution_context import (ExecutionContext,
ExecutionMode)
from tradeexecutor.strategy.pandas_trader.indicator import (IndicatorSet,
IndicatorSource)
from tradeexecutor.strategy.pandas_trader.strategy_input import (
StrategyInput, _calculate_and_cache_candle_width)
from tradeexecutor.strategy.parameters import StrategyParameters
from tradeexecutor.strategy.tag import StrategyTag
from tradeexecutor.strategy.trading_strategy_universe import (
TradingStrategyUniverse, load_partial_data)
from tradeexecutor.strategy.universe_model import UniverseOptions
from tradeexecutor.utils.binance import create_binance_universe
from tradeexecutor.utils.crossover import (contains_cross_over,
contains_cross_under)
from tradingstrategy.chain import ChainId
from tradingstrategy.client import Client
from tradingstrategy.lending import (LendingProtocolType,
LendingReserveDescription)
from tradingstrategy.pair import HumanReadableTradingPairDescription
from tradingstrategy.timebucket import TimeBucket
trading_strategy_engine_version = "0.5"
class Parameters:
id = "enzyme-ethereum-btc-eth-stoch-rsi" # Used in cache paths
cycle_duration = CycleDuration.cycle_7d
candle_time_bucket = TimeBucket.d7
credit_allocation = 1.0
rsi_length = 26
stoch_rsi_low = 20
stoch_rsi_high = 40
stoch_rsi_length = 19
# stop_loss_pct = Real(0.7, 0.99)
stop_loss_pct = 0.9
trailing_stop_loss_pct = 0.80
trailing_stop_loss_activation_level = 1.0
#
# Live trading only
#
chain_id = ChainId.ethereum
routing = TradeRouting.default
required_history_period = datetime.timedelta(weeks=rsi_length*2 + stoch_rsi_length + 2) # see pandas_ta.stoch_rsi for how much data is needed
trading_strategy_engine_version = "0.5"
#
# Backtesting only
#
# Use Binance data in backtesting,
# We get a longer, more meaningful, history but no credit simulation.
binance_data = True
if binance_data:
backtest_start = datetime.datetime(2020, 1, 1)
# backtest_end = datetime.datetime(2024, 4, 20)
# backtest_start = datetime.datetime(2022, 6, 1)
backtest_end = datetime.datetime(2024, 7, 15)
else:
# dex dates
backtest_start = datetime.datetime(2021, 4, 1)
backtest_end = datetime.datetime(2024, 5, 15)
stop_loss_time_bucket = TimeBucket.h4
backtest_trading_fee = 0.0005
initial_cash = 10_000
def get_strategy_trading_pairs(mode: ExecutionMode) -> list[HumanReadableTradingPairDescription]:
"""Get trading pairs the strategy uses
- Different options for backtesting
"""
use_binance = mode.is_backtesting() and Parameters.binance_data
if use_binance:
trading_pairs = [
(ChainId.centralised_exchange, "binance", "BTC", "USDT"),
(ChainId.centralised_exchange, "binance", "ETH", "USDT"),
]
else:
trading_pairs = [
(ChainId.ethereum, "uniswap-v3", "WBTC", "USDC", 0.0030), # Deep liquidity
(ChainId.ethereum, "uniswap-v3", "WETH", "USDC", 0.0005), # Deep liquidity
]
return trading_pairs
def get_lending_reserves(mode: ExecutionMode) -> list[LendingReserveDescription]:
"""Get lending reserves the strategy needs."""
use_binance = mode.is_backtesting() and Parameters.binance_data
if use_binance:
# Credit interest is not available on Binance
return []
else:
# We use Aave v2 in backtesting (longer history)
# and Aave v3 in live execution (more liquid market)
if mode.is_backtesting():
lending_reserves = [
(ChainId.ethereum, LendingProtocolType.aave_v2, "USDC"),
]
else:
lending_reserves = [
(ChainId.ethereum, LendingProtocolType.aave_v3, "USDC"),
]
return lending_reserves
def create_trading_universe(
timestamp: datetime.datetime,
client: Client,
execution_context: ExecutionContext,
universe_options: UniverseOptions,
) -> TradingStrategyUniverse:
"""Create the trading universe.
- In this example, we load all Binance spot data based on our Binance trading pair list.
"""
trading_pairs = get_strategy_trading_pairs(execution_context.mode)
lending_reserves = get_lending_reserves(execution_context.mode)
use_binance = trading_pairs[0][0] == ChainId.centralised_exchange
if use_binance:
# Backtesting - load Binance data
strategy_universe = create_binance_universe(
[f"{p[2]}{p[3]}" for p in trading_pairs],
candle_time_bucket=Parameters.candle_time_bucket,
stop_loss_time_bucket=Parameters.stop_loss_time_bucket,
start_at=universe_options.start_at,
end_at=universe_options.end_at,
trading_fee_override=Parameters.backtest_trading_fee,
include_lending=False,
forward_fill=True,
)
else:
if execution_context.live_trading or execution_context.mode == ExecutionMode.preflight_check:
start_at, end_at = None, None
required_history_period=Parameters.required_history_period
else:
required_history_period = None
start_at=universe_options.start_at
end_at=universe_options.end_at
dataset = load_partial_data(
client,
execution_context=execution_context,
time_bucket=Parameters.candle_time_bucket,
pairs=trading_pairs,
universe_options=universe_options,
start_at=start_at,
end_at=end_at,
stop_loss_time_bucket=Parameters.stop_loss_time_bucket,
lending_reserves=lending_reserves,
required_history_period=required_history_period
)
# Filter down to the single pair we are interested in
strategy_universe = TradingStrategyUniverse.create_from_dataset(
dataset,
forward_fill=True,
)
return strategy_universe
def create_indicators(
timestamp: datetime.datetime | None,
parameters: StrategyParameters,
strategy_universe: TradingStrategyUniverse,
execution_context: ExecutionContext
):
indicators = IndicatorSet()
indicators.add(
"stoch_rsi",
pandas_ta.stochrsi,
{"length": parameters.stoch_rsi_length, 'rsi_length': parameters.stoch_rsi_length, 'k': 3, 'd': 3}, # No parameters needed for this custom function
IndicatorSource.close_price,
)
indicators.add(
"rsi",
pandas_ta.rsi,
{"length": parameters.rsi_length},
IndicatorSource.close_price,
)
return indicators
def decide_trades(
input: StrategyInput,
) -> list[TradeExecution]:
#
# Decidion cycle setup.
# Read all variables we are going to use for the decisions.
#
parameters: Parameters = input.parameters
position_manager = input.get_position_manager()
state = input.state
timestamp = input.timestamp
indicators = input.indicators
strategy_universe = input.strategy_universe
cash = position_manager.get_current_cash()
trading_pairs = get_strategy_trading_pairs(input.execution_context.mode)
lending_reserves = get_lending_reserves(input.execution_context.mode)
trades = []
# Enable trailing stop loss after we reach the profit taking level
#
for position in state.portfolio.open_positions.values():
if not position.is_credit_supply():
if position.trailing_stop_loss_pct is None:
close_price = indicators.get_price(position.pair)
if close_price >= position.get_opening_price() * parameters.trailing_stop_loss_activation_level:
position.trailing_stop_loss_pct = parameters.trailing_stop_loss_pct
# Setup asset allocation parameters
max_assets = len(trading_pairs)
allocation = round(1/max_assets - 0.01, 2)
use_credit = len(lending_reserves) > 0
# If any of trading pairs enters to long position,
# close our credit position
credit_closed = False
traded_this_cycle = False
available_cash = cash
ready = False
for pair_desc in trading_pairs:
#
# Indicators
#
pair = strategy_universe.get_pair_by_human_description(pair_desc)
close_price = indicators.get_price(pair=pair) # Price the previous 15m candle closed for this decision cycle timestamp
rsi_k = indicators.get_indicator_value("stoch_rsi", pair=pair, column=f'STOCHRSIk_{parameters.stoch_rsi_length}_{parameters.stoch_rsi_length}_3_3')
rsi_d = indicators.get_indicator_value("stoch_rsi", pair=pair, column=f'STOCHRSId_{parameters.stoch_rsi_length}_{parameters.stoch_rsi_length}_3_3')
# Visualisations
#
if input.is_visualisation_enabled():
visualisation = state.visualisation
visualisation.plot_indicator(timestamp, f"RSI Stochastic {pair.base}", PlotKind.technical_indicator_detached, rsi_d, pair=pair)
visualisation.plot_indicator(timestamp,f"rsi_k {pair}", PlotKind.technical_indicator_overlay_on_detached, rsi_k, pair=pair, detached_overlay_name=f"RSI Stochastic {pair.base}")
visualisation.plot_indicator(timestamp,f"Rsi Stochastic Low {pair}", PlotKind.technical_indicator_overlay_on_detached, parameters.stoch_rsi_low, pair=pair, detached_overlay_name=f"RSI Stochastic {pair.base}")
if None in (rsi_k, rsi_d, close_price):
# Not enough historic data,
# cannot make decisions yet.
# Should never happen in live trading,
# so try to print out some useful diagnostics what might
# be wrong.
if input.execution_context.mode.is_live_trading():
stoch_rsi_df = indicators.get_indicator_dataframe("stoch_rsi", pair=pair)
candle_width = _calculate_and_cache_candle_width(stoch_rsi_df.index)
position_manager.log(
f"Strategy does not have enough data to make any decisions for the pair {pair}\n" +
f"close_price: {close_price}\n" +
f"rsi_k: {rsi_k}\n" +
f"rsi_d: {rsi_d}\n" +
f"stoch_rsi columns: {stoch_rsi_df.columns}\n" +
f"stoch_rsi index: {stoch_rsi_df.index}\n" +
f"stoch_rsi_length: {parameters.stoch_rsi_length}\n" +
f"dataframe candle width: {candle_width}",
level=logging.WARNING,
)
continue
rsi_k_series = indicators.get_indicator_series("stoch_rsi", pair=pair, column=f'STOCHRSIk_{parameters.stoch_rsi_length}_{parameters.stoch_rsi_length}_3_3')
rsi_d_series = indicators.get_indicator_series("stoch_rsi", pair=pair, column=f'STOCHRSId_{parameters.stoch_rsi_length}_{parameters.stoch_rsi_length}_3_3')
if len(rsi_k_series) < 2:
continue
ready = True
crossover, crossover_index = contains_cross_over(
rsi_k_series,
rsi_d_series,
lookback_period=2,
must_return_index=True
)
crossunder, crossunder_index = contains_cross_under(
rsi_k_series,
rsi_d_series,
lookback_period=2,
must_return_index=True
)
#
# Trading logic
#
if crossover and crossover_index == -1 :
if len(state.portfolio.open_positions) >= max_assets:
pass
# print(f"Want to place in a trade but there are already {len(state.portfolio.open_positions)} positions open and max is {parameters.max_assets} for pair {pair.base}")
# Check for open condition - is the price breaking out
#
non_credit_open_positions = [p for p in state.portfolio.open_positions.values() if not p.is_credit_supply()]
if len(non_credit_open_positions) < max_assets and state.portfolio.get_open_position_for_pair(pair) is None:
if crossover and crossover_index == -1 :
# close credit supply position before opening a new long position
if position_manager.is_any_credit_supply_position_open():
#print(f"Closing credit supply position on {timestamp}")
if not credit_closed:
current_pos = position_manager.get_current_credit_supply_position()
new_trades = position_manager.close_credit_supply_position(current_pos)
trades += new_trades
# Est. available cash after all credit positions are closed
available_cash += float(current_pos.get_quantity())
credit_closed = True
trades += position_manager.open_spot(
pair,
value=available_cash * allocation,
stop_loss_pct=parameters.stop_loss_pct,
)
traded_this_cycle = True
else:
# Check for close condition
if crossunder and crossunder_index == -1 and rsi_d > parameters.stoch_rsi_high and state.portfolio.get_open_position_for_pair(pair) is not None:
position = state.portfolio.get_open_position_for_pair(pair)
trades += position_manager.close_position(position)
traded_this_cycle = True
# We have accumulatd enough data to make the first real (non credit) trading decision.
# This allows us to have fair buy-and-hold vs backtest period comparison
if ready:
state.mark_ready(timestamp)
# If we have any access cash or new deposit, move them to Aave
if use_credit and not traded_this_cycle:
cash_to_deposit = available_cash * 0.99
new_trades = position_manager.add_cash_to_credit_supply(cash_to_deposit)
trades += new_trades
return trades
#
# Strategy metadata.
#
# Displayed in the user interface.
#
sort_priority = -1
tags = {StrategyTag.beta, StrategyTag.live}
name = "Stochastic ETH-BTC"
short_description = "A breakout strategy for ETH and BTC using Stochastic RSI indicators"
icon = "https://tradingstrategy.ai/avatars/arbitrum-stoch-rsi.webp"
long_description = """
# Strategy description
This strategy leverages the Stochastic RSI indicator to identify long-only opportunities on multiple trading pairs on the Ethereum blockchain, specifically ETH and BTC.
- Trades on WBTC/USDC and WETH/USDC on Uniswap V3.
- Designed to capture long-term trends while minimizing drawdowns.
- The strategy focuses on weekly cycles, rebalancing every 7 days.
- It performs well in trending markets and aims to protect capital during downturns with stop-loss mechanisms.
- During the bear and crab markets excess cash is deposited to Aave v3 as USDC to gain credit supply yield.
**Past performance is not indicative of future results**.
## Assets and trading venues
- The strategy trades on decentralized exchanges (DEX) such as Uniswap V3 on the Ethereum blockchain.
- Trading pairs include WBTC/USDC and WETH/USDC with the fee tier of 30 bps and 5 bps
- Keeps reserves in stablecoins such as USDC, and deposits to Aave USDC reserves for interest.>>>>>>> e0ba15c419ce942e122d9e389594787eca5ec556
## Stochastic trading
This strategy is built around Stochastic RSI indicator. It uses this indicator to detect breakout conditions
in the underlying trading pairs and allocate the strategy equity to a breakout trade.
## Backtesting
The backtesting was performed using data from Binance.
- Binance data was used, as Uniswap V3 does not have enough trading history to give meaningful backtest results.
- Backtesting does not include the interest gained from Aave USDC deposits
- [See backtesting results](./backtest)
- [Read more about backtesting](https://tradingstrategy.ai/glossary/backtest).
## Risk
The strategy has a backtested maximum drawdown of **-27%**. It employs strict stop-loss and trailing stop mechanisms to mitigate losses.
For further understanding the key aspects of risks:
- The strategy does not use any leverage.
- Trades only highly liquid pairs to ensure minimal slippage and robust trade execution.
- Decentralised finance is very novel and there is high risk of ruin if any of the underlying DeFi protocols get hacked.
## Benchmark
Here are some benchmarks comparing the strategy's performance with other indices.
| | CAGR | Maximum drawdown | Sharpe |
|------------------------------|------|------------------|--------|
| This strategy | 69% | -27% | 1.60 |
| SP500 (20 years) | 11% | -33% | 0.72 |
| Bitcoin (backtesting period) | 50% | -76% | 0.98 |
| Ether (backtesting period) | 90% | -80% | 1.22 |
Sources:
- [Our strategy](./backtest)
- [Buy and hold BTC](./backtest)
- [Buy and hold ETH](./backtest)
- [What is CAGR - Compound annual growth rate](https://tradingstrategy.ai/glossary/compound-annual-growth-rate-cagr)
- [What is maximum drawdown](https://tradingstrategy.ai/glossary/maximum-drawdown)
- [What is Sharpe ratio](https://tradingstrategy.ai/glossary/sharpe)
- [SP500 stock index](https://curvo.eu/backtest/en/portfolio/s-p-500--NoIgygZACgBArABgSANMUBJAokgQnXAWQCUEAOAdlQEYBdeoA?config=%7B%22periodStart%22%3A%222004-02%22%7D)
## Trading frequency
The strategy operates on a weekly cycle, rebalancing every Monday and adjusting positions as necessary based on Stochastic RSI signals.
## Robustness
This strategy was tested on Binance dataset.
- Uniswap price behavior and Binance price behavior should be almost equal due to arbitrage on the large trading pairs.
- The strategy does not have extensive robustness analysis, but is more based on the general idea of the trade.
- As crypto markets are new, there is unlikely to be enough market data to have a statistically significant results.
- There was no parameter sensitivity analysis done.
## Updates
This strategy is periodically reviewed and updated to incorporate the latest market data and trading techniques. Stay tuned for updates via the [Trading Strategy community](https://tradingstrategy.ai/community).
## Further information
- Any questions are welcome in [the Discord community chat](https://tradingstrategy.ai/community).
- See the blog post [on how this strategy is constructed](https://tradingstrategy.ai/blog/outperfoming-eth) for more details.
"""