Source code for tradingstrategy.top

"""Top trading pair queries.

- Data structures for /top end point

- Used for adding new pairs to open ended trading universe in external trading signal processor

- See :py:func:`tradingstrategy.client.Client.fetch_top_pairs` for usage.
"""
import datetime
import enum

from dataclasses import dataclass, field

from dataclasses_json import dataclass_json, config
from marshmallow import fields



[docs]class TopPairMethod(enum.Enum): """Method to query top pair data. - For given exchanges or token addresses, find the best trading pairs """ #: Give the endpoint a list of exchange slugs and get the best trading pairs on these exchanges. #: #: #: sorted_by_liquidity_with_filtering = "sorted-by-liquidity-with-filtering" #: Give the endpoint a list of **token** smart contract addresses and get the best trading pairs for these. #: #: by_token_addresses = "by-addresses"
[docs]@dataclass_json @dataclass(slots=True) class TopPairData: """Entry for one trading pair data in top picks. Contains - Latest cached volue :py:attr:`volume_24h_usd` - Latest cached liquidity/TVL :py:attr:`tvl_latest_usd` (may not be yet available for all tokens) - TokenSniffer risk score :py:attr:`risk_score` - TokenSniffer token tax data :py:meth:`get_buy_tax` /:py:meth:`get_sekk_tax` See also - :py:func:`tradingstrategy.utils.token_extra_data.load_extra_metadata` Example: .. code-block:: python comp_weth = top_reply.included[0] assert comp_weth.base_token == "COMP" assert comp_weth.quote_token == "WETH" assert comp_weth.get_buy_tax() == 0 assert comp_weth.get_sell_tax() == 0 assert comp_weth.volume_24h_usd > 100.0 assert comp_weth.tvl_latest_usd > 100.0 """ #: When this entry was queried #: #: Wall clock UTC time. #: #: Because the server serialises as ISO, we need special decoder #: #: https://github.com/lidatong/dataclasses-json?tab=readme-ov-file#Overriding #: queried_at: datetime.datetime = field( metadata=config( decoder=datetime.datetime.fromisoformat, mm_field=fields.DateTime(format='iso') ) ) #: Blockchain this pair is on chain_id: int #: Internal pair primary key (may change) pair_id: int #: Internal pair exchange id (may change) exchange_id: int #: Human readable exchange URL slug (may change) exchange_slug: str #: Smart contract address of pool smart contract. #: #: Uniswap v2 pair contract address, Uniswap v3 pool contract address. #: pool_address: str #: Human readable base token base_token: str #: Human readable quote token quote_token: str #: 0x lowercased address base_token_address: str #: 0x lowercased address quote_token_address: str #: Pair fee in 0...1, 0.0030 is 30 BPS fee: float #: Volume over the last 24h #: #: May not be available due to latency/denormalisation/etc. issues #: volume_24h_usd: float | None #: Last USD TVL (Uniswap v3) or XY Liquidity (Uniswap v2) #: #: May not be available due to latency/denormalisation/etc. issues #: tvl_latest_usd: float | None #: When TVL measurement was updated. #: #: How old data are we using. #: tvl_updated_at: datetime.datetime | None = field( metadata=config( decoder=datetime.datetime.fromisoformat, mm_field=fields.DateTime(format='iso') ) ) #: When volume measurement was updated #: #: How old data are we using. #: volume_updated_at: datetime.datetime | None = field( metadata=config( decoder=datetime.datetime.fromisoformat, mm_field=fields.DateTime(format='iso') ) ) #: If this pair was excluded from the top pairs, what was the human-readable heuristics reason we did this. #: #: This allows you to diagnose better why some trading pairs might not end up in the trading universe. #: exclude_reason: str | None #: TokenSniffer data for this token. #: #: Used in the filtering of scam tokens. #: #: Not available for all tokens that are filtered out for other reasons. #: This is the last check. #: #: `See more information here <https://web3-ethereum-defi.readthedocs.io/api/token_analysis/_autosummary_token_analysis/eth_defi.token_analysis.tokensniffer.html>`__. #: token_sniffer_data: dict | None def __repr__(self): return f"<Pair {self.base_token} - {self.quote_token} on {self.exchange_slug}, address {self.pool_address} - reason {self.exclude_reason}>"
[docs] def get_ticker(self) -> str: """Simple marker ticker identifier for this pair.""" return f"{self.base_token} - {self.quote_token}"
[docs] def get_exchange_slug(self) -> str: """Human readable id for the DEX this pair trades on.""" return f"{self.exchange_slug}"
[docs] def get_persistent_string_id(self) -> str: """Stable id over long period of time and across different systems.""" return f"{self.chain_id}-{self.pool_address}"
@property def token_sniffer_score(self) -> int | None: """What was the TokenSniffer score for the base token.""" if self.token_sniffer_data is None: return None return self.token_sniffer_data["score"]
[docs] def has_tax_data(self) -> bool | None: """Do we have tax data for this pair. The token tax data availability comes from TokenSniffer. No insight what tells whether it should be available or not. :return: True/False is TokenSniffer data is available, otherwise None. """ if self.token_sniffer_data is not None: return "swap_simulation" in self.token_sniffer_data
[docs] def get_buy_tax(self, epsilon=0.0001, rounding=4) -> float | None: """What was the TokenSniffer buy tax for the base token. See also :py:meth:`has_tax_data`. :param epsilon: Deal with rounding errors. :param rounding: Deal with tax estimation accuracy :return: Buy tax 0....1 or None if not available """ if self.token_sniffer_data is None: return None if not self.has_tax_data(): return None raw_buy_fee = self.token_sniffer_data["swap_simulation"].get("buy_fee") if raw_buy_fee is None: return None fee = float(raw_buy_fee) / 100 if fee < epsilon: return 0 return round(fee, rounding)
[docs] def get_sell_tax(self, epsilon=0.0001, rounding=4) -> float | None: """What was the TokenSniffer sell tax for the base token. See also :py:meth:`has_tax_data`. :param epsilon: Deal with rounding errors. :param rounding: Deal with tax estimation accuracy :return: Sell tax 0....1 or None if not available """ if self.token_sniffer_data is None: return None if not self.has_tax_data(): return None raw_sell_fee = self.token_sniffer_data["swap_simulation"].get("sell_fee") if raw_sell_fee is None: return None fee = float(raw_sell_fee) / 100 if fee < epsilon: return 0 return round(fee, rounding)
[docs]@dataclass_json @dataclass(slots=True) class TopPairsReply: """/top endpoint reply. - Get a list of trading pairs, both included and excluded """ #: The top list at the point of time the request was made included: list[TopPairData] #: Tokens that were considered for top list, but excluded for some reason #: #: They had enough liquidity, but they failed e.g. TokenSniffer scam check, #: or had a trading pair for the same base token with better fees, etc. #: excluded: list[TopPairData] def __repr__(self): return f"<TopPairsReply included {len(self.included)}, excluded {len(self.excluded)}>"
[docs] def as_token_address_map(self) -> dict[str, TopPairData]: """Make base token address lookupable data. Includes both excluded and included pairs. Included takes priority if multiple pairs. :return: Map with all token addresses lowercase. """ exc_data = {entry.base_token_address: entry for entry in self.excluded} inc_data = {entry.base_token_address: entry for entry in self.included} return exc_data | inc_data