"""Top trading pair queries.
- Data structures for /top end point
- Used for adding new pairs to open ended trading universe in external trading signal processor
- See :py:func:`tradingstrategy.client.Client.fetch_top_pairs` for usage.
"""
import datetime
import enum
from dataclasses import dataclass, field
from dataclasses_json import dataclass_json, config
from marshmallow import fields
[docs]class TopPairMethod(enum.Enum):
"""Method to query top pair data.
- For given exchanges or token addresses, find the best trading pairs
"""
#: Give the endpoint a list of exchange slugs and get the best trading pairs on these exchanges.
#:
#:
#:
sorted_by_liquidity_with_filtering = "sorted-by-liquidity-with-filtering"
#: Give the endpoint a list of **token** smart contract addresses and get the best trading pairs for these.
#:
#:
by_token_addresses = "by-addresses"
[docs]@dataclass_json
@dataclass(slots=True)
class TopPairData:
"""Entry for one trading pair data in top picks.
Contains
- Latest cached volue :py:attr:`volume_24h_usd`
- Latest cached liquidity/TVL :py:attr:`tvl_latest_usd` (may not be yet available for all tokens)
- TokenSniffer risk score :py:attr:`risk_score`
- TokenSniffer token tax data :py:meth:`get_buy_tax` /:py:meth:`get_sekk_tax`
See also
- :py:func:`tradingstrategy.utils.token_extra_data.load_extra_metadata`
Example:
.. code-block:: python
comp_weth = top_reply.included[0]
assert comp_weth.base_token == "COMP"
assert comp_weth.quote_token == "WETH"
assert comp_weth.get_buy_tax() == 0
assert comp_weth.get_sell_tax() == 0
assert comp_weth.volume_24h_usd > 100.0
assert comp_weth.tvl_latest_usd > 100.0
"""
#: When this entry was queried
#:
#: Wall clock UTC time.
#:
#: Because the server serialises as ISO, we need special decoder
#:
#: https://github.com/lidatong/dataclasses-json?tab=readme-ov-file#Overriding
#:
queried_at: datetime.datetime = field(
metadata=config(
decoder=datetime.datetime.fromisoformat,
mm_field=fields.DateTime(format='iso')
)
)
#: Blockchain this pair is on
chain_id: int
#: Internal pair primary key (may change)
pair_id: int
#: Internal pair exchange id (may change)
exchange_id: int
#: Human readable exchange URL slug (may change)
exchange_slug: str
#: Smart contract address of pool smart contract.
#:
#: Uniswap v2 pair contract address, Uniswap v3 pool contract address.
#:
pool_address: str
#: Human readable base token
base_token: str
#: Human readable quote token
quote_token: str
#: 0x lowercased address
base_token_address: str
#: 0x lowercased address
quote_token_address: str
#: Pair fee in 0...1, 0.0030 is 30 BPS
fee: float
#: Volume over the last 24h
#:
#: May not be available due to latency/denormalisation/etc. issues
#:
volume_24h_usd: float | None
#: Last USD TVL (Uniswap v3) or XY Liquidity (Uniswap v2)
#:
#: May not be available due to latency/denormalisation/etc. issues
#:
tvl_latest_usd: float | None
#: When TVL measurement was updated.
#:
#: How old data are we using.
#:
tvl_updated_at: datetime.datetime | None = field(
metadata=config(
decoder=datetime.datetime.fromisoformat,
mm_field=fields.DateTime(format='iso')
)
)
#: When volume measurement was updated
#:
#: How old data are we using.
#:
volume_updated_at: datetime.datetime | None = field(
metadata=config(
decoder=datetime.datetime.fromisoformat,
mm_field=fields.DateTime(format='iso')
)
)
#: If this pair was excluded from the top pairs, what was the human-readable heuristics reason we did this.
#:
#: This allows you to diagnose better why some trading pairs might not end up in the trading universe.
#:
exclude_reason: str | None
#: TokenSniffer data for this token.
#:
#: Used in the filtering of scam tokens.
#:
#: Not available for all tokens that are filtered out for other reasons.
#: This is the last check.
#:
#: `See more information here <https://web3-ethereum-defi.readthedocs.io/api/token_analysis/_autosummary_token_analysis/eth_defi.token_analysis.tokensniffer.html>`__.
#:
token_sniffer_data: dict | None
def __repr__(self):
return f"<Pair {self.base_token} - {self.quote_token} on {self.exchange_slug}, address {self.pool_address} - reason {self.exclude_reason}>"
[docs] def get_ticker(self) -> str:
"""Simple marker ticker identifier for this pair."""
return f"{self.base_token} - {self.quote_token}"
[docs] def get_exchange_slug(self) -> str:
"""Human readable id for the DEX this pair trades on."""
return f"{self.exchange_slug}"
[docs] def get_persistent_string_id(self) -> str:
"""Stable id over long period of time and across different systems."""
return f"{self.chain_id}-{self.pool_address}"
@property
def token_sniffer_score(self) -> int | None:
"""What was the TokenSniffer score for the base token."""
if self.token_sniffer_data is None:
return None
return self.token_sniffer_data["score"]
[docs] def has_tax_data(self) -> bool | None:
"""Do we have tax data for this pair.
The token tax data availability comes from TokenSniffer.
No insight what tells whether it should be available or not.
:return:
True/False is TokenSniffer data is available, otherwise None.
"""
if self.token_sniffer_data is not None:
return "swap_simulation" in self.token_sniffer_data
[docs] def get_buy_tax(self, epsilon=0.0001, rounding=4) -> float | None:
"""What was the TokenSniffer buy tax for the base token.
See also :py:meth:`has_tax_data`.
:param epsilon:
Deal with rounding errors.
:param rounding:
Deal with tax estimation accuracy
:return:
Buy tax 0....1 or None if not available
"""
if self.token_sniffer_data is None:
return None
if not self.has_tax_data():
return None
raw_buy_fee = self.token_sniffer_data["swap_simulation"].get("buy_fee")
if raw_buy_fee is None:
return None
fee = float(raw_buy_fee) / 100
if fee < epsilon:
return 0
return round(fee, rounding)
[docs] def get_sell_tax(self, epsilon=0.0001, rounding=4) -> float | None:
"""What was the TokenSniffer sell tax for the base token.
See also :py:meth:`has_tax_data`.
:param epsilon:
Deal with rounding errors.
:param rounding:
Deal with tax estimation accuracy
:return:
Sell tax 0....1 or None if not available
"""
if self.token_sniffer_data is None:
return None
if not self.has_tax_data():
return None
raw_sell_fee = self.token_sniffer_data["swap_simulation"].get("sell_fee")
if raw_sell_fee is None:
return None
fee = float(raw_sell_fee) / 100
if fee < epsilon:
return 0
return round(fee, rounding)
[docs]@dataclass_json
@dataclass(slots=True)
class TopPairsReply:
"""/top endpoint reply.
- Get a list of trading pairs, both included and excluded
"""
#: The top list at the point of time the request was made
included: list[TopPairData]
#: Tokens that were considered for top list, but excluded for some reason
#:
#: They had enough liquidity, but they failed e.g. TokenSniffer scam check,
#: or had a trading pair for the same base token with better fees, etc.
#:
excluded: list[TopPairData]
def __repr__(self):
return f"<TopPairsReply included {len(self.included)}, excluded {len(self.excluded)}>"
[docs] def as_token_address_map(self) -> dict[str, TopPairData]:
"""Make base token address lookupable data.
Includes both excluded and included pairs.
Included takes priority if multiple pairs.
:return:
Map with all token addresses lowercase.
"""
exc_data = {entry.base_token_address: entry for entry in self.excluded}
inc_data = {entry.base_token_address: entry for entry in self.included}
return exc_data | inc_data