visualise_equity_curve_benchmark#
API documentation for tradeexecutor.visual.benchmark.visualise_equity_curve_benchmark Python function.
- visualise_equity_curve_benchmark(name=None, title=None, state=None, portfolio_statistics=None, all_cash=None, buy_and_hold_asset_name=None, buy_and_hold_price_series=None, benchmark_indexes=None, additional_indicators=None, height=1200, start_at=None, end_at=None, log_y=False)[source]#
Visualise strategy performance against benchmarks.
Live or backtested strategies
Benchmark against buy and hold of various assets
Benchmark against hold all cash
Note
This will be deprecated. Use
visualise_equity_curves()
instead.Example for a single trading pair strategy:
from tradeexecutor.visual.benchmark import visualise_benchmark traded_pair = universe.universe.pairs.get_single() fig = visualise_benchmark( state.name, portfolio_statistics=state.stats.portfolio, all_cash=state.portfolio.get_initial_deposit(), buy_and_hold_asset_name=traded_pair.base_token_symbol, buy_and_hold_price_series=universe.universe.candles.get_single_pair_data()["close"], height=800 ) fig.show()
Example how to benchmark a strategy against buy-and-hold BTC and ETH:
from tradeexecutor.visual.benchmark import visualise_benchmark # List of pair descriptions we used to look up pair metadata our_pairs = [ (ChainId.centralised_exchange, "binance", "BTC", "USDT"), (ChainId.centralised_exchange, "binance", "ETH", "USDT"), ] btc_pair = strategy_universe.data_universe.pairs.get_pair_by_human_description(our_pairs[0]) eth_pair = strategy_universe.data_universe.pairs.get_pair_by_human_description(our_pairs[1]) benchmark_indexes = pd.DataFrame({ "BTC": strategy_universe.data_universe.candles.get_candles_by_pair(btc_pair)["close"], "ETH": strategy_universe.data_universe.candles.get_candles_by_pair(eth_pair)["close"], }) benchmark_indexes["BTC"].attrs = {"colour": "orange"} benchmark_indexes["ETH"].attrs = {"colour": "blue"} fig = visualise_benchmark( name=state.name, portfolio_statistics=state.stats.portfolio, all_cash=state.portfolio.get_initial_deposit(), benchmark_indexes=benchmark_indexes, ) fig.show()
Another example:
from tradeexecutor.visual.benchmark import visualise_benchmark TRADING_PAIRS = [ (ChainId.avalanche, "trader-joe", "WAVAX", "USDC"), # Avax (ChainId.polygon, "quickswap", "WMATIC", "USDC"), # Matic (ChainId.ethereum, "uniswap-v2", "WETH", "USDC"), # Eth (ChainId.ethereum, "uniswap-v2", "WBTC", "USDC"), # Btc ] # Benchmark against all of our assets benchmarks = pd.DataFrame() for pair_description in TRADING_PAIRS: token_symbol = pair_description[2] pair = universe.get_pair_by_human_description(pair_description) benchmarks[token_symbol] = universe.universe.candles.get_candles_by_pair(pair.internal_id)["close"] fig = visualise_benchmark( "Bollinger bands example strategy", portfolio_statistics=state.stats.portfolio, all_cash=state.portfolio.get_initial_deposit(), benchmark_indexes=benchmarks, start_at=START_AT, end_at=END_AT, height=800 ) fig.show()
- Parameters:
name (Optional[str]) – The name of the primary asset we benchark
title (Optional[str]) – The title of the chart if separate from primary asset
portfolio_statistics (Optional[List[PortfolioStatistics]]) – Portfolio performance record.
all_cash (Optional[float]) – Set a linear line of just holding X amount
buy_and_hold_asset_name (Optional[str]) –
Visualise holding all_cash amount in the asset, bought at the start. This is basically price * all_cash.
Note
This is a legacy argument. Use benchmark_indexes instead.
buy_and_hold_price_series (Optional[Series]) –
Visualise holding all_cash amount in the asset, bought at the start. This is basically price * all_cash.
Note
This is a legacy argument. Use benchmark_indexes instead.
benchmark_indexes (Optional[DataFrame]) –
List of other asset price series displayed on the timeline besides equity curve.
DataFrame containing multiple series.
Asset name is the series name.
Setting colour for pd.Series.attrs allows you to override the colour of the index
height – Chart height in pixels
start_at (Optional[Union[Timestamp, datetime]]) – When the backtest started
end_at (Optional[Union[Timestamp, datetime]]) – When the backtest ended
additional_indicators (Optional[Collection[Plot]]) –
Additional technical indicators drawn on this chart.
List of indicator names.
The indicators must be plotted earlier using state.visualisation.plot_indicator().
Note: Currently not very useful due to Y axis scale
log_y –
Use logarithmic Y-axis.
Because we accumulate larger treasury over time, the swings in the value will be higher later. We need to use a logarithmic Y axis so that we can compare the performance early in the strateg and late in the strategy.
- Returns:
Plotly figure
- Return type:
Figure