create_trading_universe_for_tokens#
API documentation for tradeexecutor.strategy.pandas_trader.token_mapper.create_trading_universe_for_tokens Python function.
- create_trading_universe_for_tokens(client, execution_context, universe_options, time_bucket, tokens, reserve_token, intermediate_token=None, volume_30d_threshold_today=0, stop_loss_time_bucket=None, name=None)[source]#
Create a trading universe based on a list of ERC-20 tokens addresses only.
Takes a full trading universe and a list of ERC-20 addresses input, and returns a new trading pair universe with the best match for the tradeable tokens.
The good trading pair is picked by today’s 30 days USD volume. The pick may fail if the trading pair has ceased in the past.
Display TQDM progress bar for the load.
Stablecoin-stablecoin pairs are discarded.
- Parameters:
client (Client) – Trading Strategy data client
execution_context (ExecutionContext) – Needed to know if backtesting or live trading
universe_options (UniverseOptions) – Backtesting date range or historical live trading look back needed.
time_bucket (TimeBucket) –
Candle time bucket to use.
E.g. TimeBucket.d1.
stop_loss_time_bucket (tradingstrategy.timebucket.TimeBucket | None) –
Backtest stop loss simulation time bucket.
Optional.
tokens (Iterable[TokenTuple]) – Tokens we want to load
reserve_token (str) –
The reserve currency of a strategy.
E.g. USDC on Polygon ``.
intermediate_token (str | None) –
Intermediate token which we trade through.
E.g. WMATIC on Polygon ``.
volume_30d_threshold_today (float) – Volume filter threshold.
name (str | None) –
Optional name for this trading universe.
Autogenerated if not given.
- Return type: