Visualisation#
API documentation for tradeexecutor.state.visualisation.Visualisation Python class in Trading Strategy framework.
- class Visualisation[source]#
Bases:
object
Strategy visualisation helper.
This object is returned from the strategy execution cycle. It allows you to plot values, add debug messages, etc. It is not used in any trading, but can help and visualize trade backtesting and execution.
See
plot_indicator()
for how to draw plots inside decide_trades()See
get_series()
how to extract data for charting aspd.Series
.
- __init__(messages=<factory>, calculations=<factory>, plots=<factory>, pair_ids=<factory>)#
Methods
__init__
([messages, calculations, plots, ...])add_calculations
(timestamp, cycle_calculations)Update strategy cycle calculations diagnostics.
add_message
(timestamp, content)Write a debug message.
from_dict
(kvs, *[, infer_missing])from_json
(s, *[, parse_float, parse_int, ...])get_series
(name)Get plot data for charts and tables.
get_timestamp_range
([plot_name])Get the time range for which we have data.
Get number of data points stored in all plots.
plot_indicator
(timestamp, name, kind, value)Add a value to the output data and diagram.
schema
(*[, infer_missing, only, exclude, ...])set_visualised_pairs
(pairs)Set the trading pair for this plot.
to_dict
([encode_json])to_json
(*[, skipkeys, ensure_ascii, ...])Attributes
Messages for each strategy cycle.
Extra calculation diagnostics for each strategy cycle.
Name -> Plot value mappings
Trading pair IDs to visualise instead of the default trading pairs from strategy universe.
- messages: Dict[int, List[str]]#
Messages for each strategy cycle.
Because we cannot use datetime.datetime directly as a key in JSON, we use UNIX timestamp here to keep our state easily serialisable.
- calculations: Dict[int, dict]#
Extra calculation diagnostics for each strategy cycle.
Cycle -> dict of values mappings.
Currently used to record the alpha model state when doing doing portfolio construction modelling.
Because we cannot use datetime.datetime directly as a key in JSON, we use UNIX timestamp here to keep our state easily serialisable.
- pair_ids: list[int]#
Trading pair IDs to visualise instead of the default trading pairs from strategy universe.
- set_visualised_pairs(pairs)[source]#
Set the trading pair for this plot.
- Parameters:
pairs (list[tradeexecutor.state.identifier.TradingPairIdentifier]) – Use these trading pairs to plot candle charts instead of the default trading pairs from strategy universe.
- Return type:
None
- add_message(timestamp, content)[source]#
Write a debug message.
Each message is associated to a different timepoint.
- add_calculations(timestamp, cycle_calculations)[source]#
Update strategy cycle calculations diagnostics.
Each strategy cycle can dump whatever intermediate calculations state on the visualisation record keeping, so that it can be later pulled up in the analysis.
Currently this is used to store the alpha model calculations for portfolio construction model.
Note
Using this method may slow down your backtests because serialising
cycle_calculations
might be slow. Avoid if not needed.
- __init__(messages=<factory>, calculations=<factory>, plots=<factory>, pair_ids=<factory>)#
- plot_indicator(timestamp, name, kind, value, colour=None, plot_shape=PlotShape.linear, detached_overlay_name=None, indicator_size=None, recording_time=RecordingTime.decision_making_time, pair=None, label=PlotLabel.axis, height=None)[source]#
Add a value to the output data and diagram.
Plots are stored by their name.
Example how to draw a detached RSI indicator and top/bottom indicator line for it:
# Current daily visualisation.plot_indicator( timestamp, f"RSI {token}", PlotKind.technical_indicator_detached, current_rsi_values[pair], ) # Low (vertical line) visualisation.plot_indicator( timestamp, f"RSI {token} low trigger", PlotKind.technical_indicator_overlay_on_detached, rsi_low, detached_overlay_name=f"RSI {token}", plot_shape=PlotShape.horizontal_vertical, ) # High (vertical line) visualisation.plot_indicator( timestamp, f"RSI {token} high trigger", PlotKind.technical_indicator_overlay_on_detached, rsi_high, detached_overlay_name=f"RSI {token}", plot_shape=PlotShape.horizontal_vertical, )
- Parameters:
timestamp (Union[datetime, Timestamp]) – The current strategy cycle timestamp
name (str) – The plot label
kind (PlotKind) – The plot typre
value (float) – Current value e.g. price as USD
plot_shape (Optional[PlotShape]) – PlotShape enum value e.g. Plotshape.linear or Plotshape.horizontal_vertical
detached_overlay_name (Optional[str]) – If this plot is overlayed on top of a detached technical indicator, this is the name of the overlay it should be attached to.
indicator_size (Optional[float]) – Optional indicator to determine the size of the indicator. For a line, this is the width of the line. For a marker, this is the size of the marker.
recording_time (Optional[RecordingTime]) – Optional recording time to determine when the plot should be recorded. For example, if you want to record the plot at the decision making time, you can set this to RecordingTime.decision_making_time. Default is RecordingTime.decision_making_time.
label (PlotLabel) –
How to render the label for this plot.
The last set value is effective.
Currently not supported.
Plotly does not support setting heights of individual subplots. Instead, you can adjust the overall
plotly.Figure
size in pixels and then % of subplot height in them.pair (Optional[TradingPairIdentifier]) –
- get_series(name)[source]#
Get plot data for charts and tables.
Example from a backtesting notebook:
import plotly.express as px visualisation = state.visualisation df = pd.DataFrame({ "assets_available": visualisation.get_series("assets_available"), "assets_chosen": visualisation.get_series("assets_chosen") }) fig = px.line(df, title='Assets tradeable vs. chosen to the basket') fig.update_yaxes(title="Number of assets") fig.update_xaxes(title="Time") fig.show()
- Parameters:
name (str) – Same as in
plot_indicator()
- Returns:
Pandas series with DateTimeIndex and float values.
- Return type: