get_benchmark_data#
API documentation for tradeexecutor.analysis.multi_asset_benchmark.get_benchmark_data Python function.
- get_benchmark_data(strategy_universe, max_count=2, interesting_assets=['BTC', 'WBTC', 'ETH', 'WETH', 'WMATIC', 'MATIC', 'ARB', 'WARB', 'SOL', 'WSOL'], cumulative_with_initial_cash=0.0, asset_colours={'AAVE': '#F289DA', 'ARB': 'red', 'All cash': 'black', 'BTC': 'orange', 'DOGE': 'darkorange', 'ETH': 'blue', 'MATIC': 'purple', 'MKR': '#1AAB9B', 'PEPE': 'darkmagenta', 'SOL': 'lightblue', 'Strategy': 'green'}, start_at=None, include_price_series=False)[source]#
Get returns series of different benchmark index assets from the universe.
Assets are: BTC, ETH, MATIC
To be used with
compare_multiple_portfolios()
andtradeexecutor.visual.benchmark.visualise_equity_curve_benchmark()
.Example:
from tradeexecutor.analysis.multi_asset_benchmark import get_benchmark_data from tradeexecutor.visual.benchmark import visualise_equity_curve_benchmark benchmark_indexes = get_benchmark_data( strategy_universe, cumulative_with_initial_cash=state.portfolio.get_initial_cash() ) fig = visualise_equity_curve_benchmark( name=state.name, portfolio_statistics=state.stats.portfolio, all_cash=state.portfolio.get_initial_cash(), benchmark_indexes=benchmark_indexes, height=800, log_y=False, ) fig.show()
- Parameters:
max_count – Return this many benchmark series
interesting_assets –
Choose to benchmark from these.
We also check for wrapped token symbol varients.
cumulative_with_initial_cash (float) –
Get cumulative returns instead of daily returns.
Set to the cumulative initial cash value.
include_price_series –
Include price series for the comparison.
Changes return type.
strategy_universe (TradingStrategyUniverse) –
- Returns:
DataFrame with returns series for each asset.
Each series has colour and name metadata added to the series.attr.
- Return type:
pandas.core.frame.DataFrame | tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame]