Source code for tradeexecutor.strategy.tvl_size_risk

"""TVL-based trade and position size risking."""
import abc
import datetime
import enum
from decimal import Decimal

import pandas as pd

from tradeexecutor.state.identifier import TradingPairIdentifier
from tradeexecutor.state.size_risk import SizeRisk
from tradeexecutor.state.types import USDollarAmount, TokenAmount, USDollarPrice, AnyTimestamp
from tradeexecutor.strategy.pricing_model import PricingModel
from tradeexecutor.strategy.routing import RoutingModel
from tradeexecutor.strategy.size_risk_model import SizeRiskModel, SizingType
from tradingstrategy.liquidity import LiquidityDataUnavailable
from tradingstrategy.pair import PandasPairUniverse
from tradingstrategy.types import Percent

#: We assume we are too rich to trade 10M trades/positions
UNLIMITED_CAP: Percent = 1.0


[docs]class TVLMethod(enum.Enum): """What kind of TVL estimator we use.""" historical_usd_tracked = "historical_usd_tracked" raw_chain_based = "raw_chain_based"
[docs]class BaseTVLSizeRiskModel(SizeRiskModel): """A trade sizer that uses % of TVL of the target pool as the cap. - Reads TVL estimation and uses that to set the maximum size for a trade - Used in backtesting - fast to test as we do not need to query the historical liquidity from the archive node to get the accurate price impact """
[docs] def __init__( self, pricing_model: PricingModel, per_trade_cap: Percent = UNLIMITED_CAP, per_position_cap: Percent = UNLIMITED_CAP, ): """ :param per_trade_cap: Maximum US dollar value of a single trade, or unlimited. """ self.pricing_model = pricing_model self.per_trade_cap = per_trade_cap self.per_position_cap = per_position_cap
[docs] def get_pair_cap(self, pair: TradingPairIdentifier, sizing_type: SizingType) -> Percent: """Get cap for an individual trade for a pair. - Different pool types can have different caps because of CLMM has better capital efficiency """ match sizing_type: case SizingType.buy | SizingType.sell: return self.per_trade_cap case SizingType.hold: return self.per_position_cap case _: raise NotImplementedError()
def get_acceptable_size_for_buy( self, timestamp: AnyTimestamp | None, pair: TradingPairIdentifier, asked_size: USDollarAmount, ) -> SizeRisk: tvl = self.get_tvl(timestamp, pair) cap_pct = self.get_pair_cap(pair, SizingType.buy) tvl_cap = tvl * cap_pct accepted_size = min(tvl_cap, asked_size) capped = bool(accepted_size == tvl_cap) diagnostics_data = { "tvl": tvl, "cap_pct": cap_pct, } return SizeRisk( timestamp=timestamp, sizing_type=SizingType.buy, pair=pair, path=[pair], asked_size=asked_size, accepted_size=accepted_size, capped=capped, diagnostics_data=diagnostics_data, tvl=tvl, ) def get_acceptable_size_for_sell( self, timestamp: AnyTimestamp | None, pair: TradingPairIdentifier, asked_quantity: TokenAmount, ) -> SizeRisk: assert isinstance(asked_quantity, Decimal) mid_price = self.pricing_model.get_mid_price(timestamp, pair) asked_value = asked_quantity * mid_price tvl = self.get_tvl(timestamp, pair) cap_pct = self.get_pair_cap(pair, SizingType.sell) tvl_cap = tvl * cap_pct max_value = min(tvl_cap, asked_value) capped = bool(max_value == self.per_trade_cap) accepted_quantity = Decimal(max_value / mid_price) diagnostics_data = { "tvl": tvl, "cap_pct": cap_pct, } return SizeRisk( timestamp=timestamp, sizing_type=SizingType.sell, pair=pair, path=[pair], asked_quantity=asked_quantity, accepted_quantity=accepted_quantity, asked_size=asked_value, accepted_size=max_value, capped=capped, diagnostics_data=diagnostics_data, tvl=tvl, )
[docs] def get_acceptable_size_for_position( self, timestamp: AnyTimestamp | None, pair: TradingPairIdentifier, asked_value: USDollarAmount, ) -> SizeRisk: tvl = self.get_tvl(timestamp, pair) cap_pct = self.get_pair_cap(pair, SizingType.hold) tvl_cap = tvl * cap_pct accepted_size = min(tvl_cap, asked_value) capped = bool(accepted_size == tvl_cap) diagnostics_data = { "tvl": tvl, "cap_pct": cap_pct, } return SizeRisk( timestamp=timestamp, sizing_type=SizingType.hold, pair=pair, path=[pair], asked_size=asked_value, accepted_size=accepted_size, capped=capped, diagnostics_data=diagnostics_data, tvl=tvl, )
[docs] @abc.abstractmethod def get_tvl(self, timestamp: AnyTimestamp | None, pair: TradingPairIdentifier) -> USDollarAmount: """Read the TVL from the underlying pricing model."""
[docs]class USDTVLSizeRiskModel(BaseTVLSizeRiskModel): """Estimate the trade size based historical USD TVL values. - Fast as we have preprocessed data available - Some tokens may spoof this value and give unrealistic sizes """
[docs] def __init__( self, pricing_model: PricingModel, per_trade_cap: Percent = UNLIMITED_CAP, per_position_cap: Percent = UNLIMITED_CAP, missing_tvl_placeholder_usd: USDollarAmount = None, ): """Create size-risk model. :param pricing_model: Pricing model is used to read TVL data (historical/real time) :param per_trade_cap: How many % of pool TVL on trade can be :param per_position_cap: How many % of pool TVL on trade can be :parma missing_tvl_placeholder_usd: If we do not have TVL data available, use this value as a fixed US value placeholder. E.g. set to `250_000` to assume all unknown pools to have 250k TVL at any point of time. """ super().__init__( pricing_model, per_trade_cap, per_position_cap ) self.missing_tvl_placeholder = missing_tvl_placeholder_usd
[docs] def get_tvl(self, timestamp: AnyTimestamp, pair: TradingPairIdentifier) -> USDollarAmount: """Read the TVL from the underlying pricing model.""" exc = None try: tvl = self.pricing_model.get_usd_tvl(timestamp, pair) except LiquidityDataUnavailable as e: if self.missing_tvl_placeholder: tvl = self.missing_tvl_placeholder else: tvl = None exc = e assert tvl is not None, \ f"HistoricalUSDTVLSizeRiskModel.get_tvl(): Cannot read TVL value at {timestamp} for pair {pair}\n" \ f"Does the universe have liquidity data set up?\n" \ f"Pricing model is: {self.pricing_model}\n" \ f"Exception was: {exc}\n" return tvl
[docs]class QuoteTokenTVLSizeRiskModel(BaseTVLSizeRiskModel): """Estimate the trade size based on raw quote tokens. - Directly query onchain value for the available liquidity in quote token, but slow as we need to use onchain data source - Imppossible to spoof - May not give accurate values - Not finished """
[docs] def __init__( self, pair_universe: PandasPairUniverse, routing_model: RoutingModel, pricing_model: PricingModel, per_trade_cap: Percent = UNLIMITED_CAP, per_position_cap: Percent = UNLIMITED_CAP, ): self.pair_universe = pair_universe self.routing_model = routing_model super().__init__( pricing_model, per_trade_cap, per_position_cap )
[docs] def get_tvl(self, timestamp: datetime.datetime, pair: TradingPairIdentifier) -> USDollarAmount: """Read the TVL from the underlying pricing model.""" leg1, leg2 = self.routing_model.route_pair(self.pair_universe, pair) if leg2: path = [leg1, leg2] else: path = [leg1] rate = self.get_usd_conversion_rate(timestamp, path) tvl = self.pricing_model.get_quote_token_tvl(timestamp, pair) return tvl * rate
[docs] def get_usd_conversion_rate(self, timestamp: datetime.datetime, path: list[TradingPairIdentifier]) -> USDollarPrice: """For multi-legged trades, get the USD conversion rate of the last leg. - E.g. when trading USD->ETH->BTC get the USD/ETH price and then we get BTC/USD price by multiplying ETH/BTC price with this. """ assert len(path) > 0 assert path[0].quote.is_stablecoin(), f"The starting point is not a stablecoin: {path[0]}" match len(path): case 1: return 1.0 case 2: return self.pricing_model.get_mid_price(timestamp, path[0]) case _: raise NotImplementedError(f"Only three-leg trades supported: {path}")