BacktestDatasetDefinion#
API documentation for tradeexecutor.backtest.preprocessed_backtest.BacktestDatasetDefinion Python class in Trading Strategy framework.
- class BacktestDatasetDefinion[source]#
- Bases: - object- Predefined backtesting dataset - __init__(slug, name, description, chain, time_bucket, start, end, exchanges, always_included_pairs, reserve_token_address, min_tvl=None, min_weekly_volume=None, categories=None, max_fee=None, min_tokensniffer_score=None, filter_duplicates=True, formats=(<ExportFormat.parquet: 'parquet'>, ))#
- Parameters:
- slug (str) – 
- name (str) – 
- description (str) – 
- chain (ChainId) – 
- time_bucket (TimeBucket) – 
- start (<module 'datetime' from '/opt/hostedtoolcache/Python/3.11.13/x64/lib/python3.11/datetime.py'>) – 
- end (<module 'datetime' from '/opt/hostedtoolcache/Python/3.11.13/x64/lib/python3.11/datetime.py'>) – 
- reserve_token_address (str) – 
- min_tvl (float | None) – 
- min_weekly_volume (float | None) – 
- max_fee (float | None) – 
- min_tokensniffer_score (int | None) – 
- filter_duplicates (bool) – 
- formats (tuple[tradeexecutor.backtest.preprocessed_backtest.ExportFormat]) – 
 
- Return type:
- None 
 
 - Methods - __init__(slug, name, description, chain, ...)- Attributes - categories- If we have multiple base/quote matches, try to filter out for the best pair - formats- max_fee- min_tokensniffer_score- Prefilter pairs with this liquidity before calling token sniffer - Filter used in the reporting notebook. - slug- name- description- chain- time_bucket- start- end- exchanges- Pair descriptions that are always included, regardless of min_tvl and category filtering - The main USDC/USDT token on the chain - always_included_pairs: list[tuple]#
- Pair descriptions that are always included, regardless of min_tvl and category filtering 
 - reserve_token_address: str#
- The main USDC/USDT token on the chain - We use this to generate equally-weighted index report and as a reserve token in this index. 
 - min_weekly_volume: float | None = None#
- Filter used in the reporting notebook. - Note that you still need to do actual volum filtering in the dataset yourself, as volume 0 days are exported. 
 - filter_duplicates: bool = True#
- If we have multiple base/quote matches, try to filter out for the best pair 
 - __init__(slug, name, description, chain, time_bucket, start, end, exchanges, always_included_pairs, reserve_token_address, min_tvl=None, min_weekly_volume=None, categories=None, max_fee=None, min_tokensniffer_score=None, filter_duplicates=True, formats=(<ExportFormat.parquet: 'parquet'>, ))#
- Parameters:
- slug (str) – 
- name (str) – 
- description (str) – 
- chain (ChainId) – 
- time_bucket (TimeBucket) – 
- start (<module 'datetime' from '/opt/hostedtoolcache/Python/3.11.13/x64/lib/python3.11/datetime.py'>) – 
- end (<module 'datetime' from '/opt/hostedtoolcache/Python/3.11.13/x64/lib/python3.11/datetime.py'>) – 
- reserve_token_address (str) – 
- min_tvl (float | None) – 
- min_weekly_volume (float | None) – 
- max_fee (float | None) – 
- min_tokensniffer_score (int | None) – 
- filter_duplicates (bool) – 
- formats (tuple[tradeexecutor.backtest.preprocessed_backtest.ExportFormat]) – 
 
- Return type:
- None