Source code for pandas_ta.momentum.bop
# -*- coding: utf-8 -*-
from pandas_ta import Imports
from pandas_ta.utils import get_offset, non_zero_range, verify_series
[docs]def bop(open_, high, low, close, scalar=None, talib=None, offset=None, **kwargs):
"""Indicator: Balance of Power (BOP)"""
# Validate Arguments
open_ = verify_series(open_)
high = verify_series(high)
low = verify_series(low)
close = verify_series(close)
scalar = float(scalar) if scalar else 1
offset = get_offset(offset)
mode_tal = bool(talib) if isinstance(talib, bool) else True
# Calculate Result
if Imports["talib"] and mode_tal:
from talib import BOP
bop = BOP(open_, high, low, close)
else:
high_low_range = non_zero_range(high, low)
close_open_range = non_zero_range(close, open_)
bop = scalar * close_open_range / high_low_range
# Offset
if offset != 0:
bop = bop.shift(offset)
# Handle fills
if "fillna" in kwargs:
bop.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
bop.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
bop.name = f"BOP"
bop.category = "momentum"
return bop
bop.__doc__ = \
"""Balance of Power (BOP)
Balance of Power measure the market strength of buyers against sellers.
Sources:
http://www.worden.com/TeleChartHelp/Content/Indicators/Balance_of_Power.htm
Calculation:
BOP = scalar * (close - open) / (high - low)
Args:
open (pd.Series): Series of 'open's
high (pd.Series): Series of 'high's
low (pd.Series): Series of 'low's
close (pd.Series): Series of 'close's
scalar (float): How much to magnify. Default: 1
talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib
version. Default: True
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""