# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta.utils import get_drift, get_offset, non_zero_range, verify_series
[docs]def brar(open_, high, low, close, length=None, scalar=None, drift=None, offset=None, **kwargs):
    """Indicator: BRAR (BRAR)"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 26
    scalar = float(scalar) if scalar else 100
    high_open_range = non_zero_range(high, open_)
    open_low_range = non_zero_range(open_, low)
    open_ = verify_series(open_, length)
    high = verify_series(high, length)
    low = verify_series(low, length)
    close = verify_series(close, length)
    drift = get_drift(drift)
    offset = get_offset(offset)
    if open_ is None or high is None or low is None or close is None: return
    # Calculate Result
    hcy = non_zero_range(high, close.shift(drift))
    cyl = non_zero_range(close.shift(drift), low)
    hcy[hcy < 0] = 0  # Zero negative values
    cyl[cyl < 0] = 0  # ""
    ar = scalar * high_open_range.rolling(length).sum()
    ar /= open_low_range.rolling(length).sum()
    br = scalar * hcy.rolling(length).sum()
    br /= cyl.rolling(length).sum()
    # Offset
    if offset != 0:
        ar = ar.shift(offset)
        br = ar.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        ar.fillna(kwargs["fillna"], inplace=True)
        br.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        ar.fillna(method=kwargs["fill_method"], inplace=True)
        br.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    _props = f"_{length}"
    ar.name = f"AR{_props}"
    br.name = f"BR{_props}"
    ar.category = br.category = "momentum"
    # Prepare DataFrame to return
    brardf = DataFrame({ar.name: ar, br.name: br})
    brardf.name = f"BRAR{_props}"
    brardf.category = "momentum"
    return brardf 
brar.__doc__ = \
"""BRAR (BRAR)
BR and AR
Sources:
    No internet resources on definitive definition.
    Request by Github user homily, issue #46
Calculation:
    Default Inputs:
        length=26, scalar=100
    SUM = Sum
    HO_Diff = high - open
    OL_Diff = open - low
    HCY = high - close[-1]
    CYL = close[-1] - low
    HCY[HCY < 0] = 0
    CYL[CYL < 0] = 0
    AR = scalar * SUM(HO, length) / SUM(OL, length)
    BR = scalar * SUM(HCY, length) / SUM(CYL, length)
Args:
    open_ (pd.Series): Series of 'open's
    high (pd.Series): Series of 'high's
    low (pd.Series): Series of 'low's
    close (pd.Series): Series of 'close's
    length (int): The period. Default: 26
    scalar (float): How much to magnify. Default: 100
    drift (int): The difference period. Default: 1
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.DataFrame: ar, br columns.
"""