Source code for pandas_ta.momentum.cfo
# -*- coding: utf-8 -*-
from pandas_ta.overlap import linreg
from pandas_ta.utils import get_drift, get_offset, verify_series
[docs]def cfo(close, length=None, scalar=None, drift=None, offset=None, **kwargs):
"""Indicator: Chande Forcast Oscillator (CFO)"""
# Validate Arguments
length = int(length) if length and length > 0 else 9
scalar = float(scalar) if scalar else 100
close = verify_series(close, length)
drift = get_drift(drift)
offset = get_offset(offset)
if close is None: return
# Finding linear regression of Series
cfo = scalar * (close - linreg(close, length=length, tsf=True))
cfo /= close
# Offset
if offset != 0:
cfo = cfo.shift(offset)
# Handle fills
if "fillna" in kwargs:
cfo.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
cfo.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
cfo.name = f"CFO_{length}"
cfo.category = "momentum"
return cfo
cfo.__doc__ = \
"""Chande Forcast Oscillator (CFO)
The Forecast Oscillator calculates the percentage difference between the actual
price and the Time Series Forecast (the endpoint of a linear regression line).
Sources:
https://www.fmlabs.com/reference/default.htm?url=ForecastOscillator.htm
Calculation:
Default Inputs:
length=9, drift=1, scalar=100
LINREG = Linear Regression
CFO = scalar * (close - LINERREG(length, tdf=True)) / close
Args:
close (pd.Series): Series of 'close's
length (int): The period. Default: 9
scalar (float): How much to magnify. Default: 100
drift (int): The short period. Default: 1
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""