Source code for pandas_ta.momentum.cmo
# -*- coding: utf-8 -*-
from pandas_ta import Imports
from pandas_ta.overlap import rma
from pandas_ta.utils import get_drift, get_offset, verify_series
[docs]def cmo(close, length=None, scalar=None, talib=None, drift=None, offset=None, **kwargs):
"""Indicator: Chande Momentum Oscillator (CMO)"""
# Validate Arguments
length = int(length) if length and length > 0 else 14
scalar = float(scalar) if scalar else 100
close = verify_series(close, length)
drift = get_drift(drift)
offset = get_offset(offset)
mode_tal = bool(talib) if isinstance(talib, bool) else True
if close is None: return
# Calculate Result
if Imports["talib"] and mode_tal:
from talib import CMO
cmo = CMO(close, length)
else:
mom = close.diff(drift)
positive = mom.copy().clip(lower=0)
negative = mom.copy().clip(upper=0).abs()
if mode_tal:
pos_ = rma(positive, length)
neg_ = rma(negative, length)
else:
pos_ = positive.rolling(length).sum()
neg_ = negative.rolling(length).sum()
cmo = scalar * (pos_ - neg_) / (pos_ + neg_)
# Offset
if offset != 0:
cmo = cmo.shift(offset)
# Handle fills
if "fillna" in kwargs:
cmo.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
cmo.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
cmo.name = f"CMO_{length}"
cmo.category = "momentum"
return cmo
cmo.__doc__ = \
"""Chande Momentum Oscillator (CMO)
Attempts to capture the momentum of an asset with overbought at 50 and
oversold at -50.
Sources:
https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/chande-momentum-oscillator-cmo/
https://www.tradingview.com/script/hdrf0fXV-Variable-Index-Dynamic-Average-VIDYA/
Calculation:
Default Inputs:
drift=1, scalar=100
# Same Calculation as RSI except for this step
CMO = scalar * (PSUM - NSUM) / (PSUM + NSUM)
Args:
close (pd.Series): Series of 'close's
scalar (float): How much to magnify. Default: 100
talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib
version. If TA Lib is not installed but talib is True, it runs the Python
version TA Lib. Default: True
drift (int): The short period. Default: 1
offset (int): How many periods to offset the result. Default: 0
Kwargs:
talib (bool): If True, uses TA-Libs implementation. Otherwise uses EMA version. Default: True
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""