Source code for pandas_ta.momentum.fisher

# -*- coding: utf-8 -*-
from numpy import log as nplog
from numpy import nan as npNaN
from pandas import DataFrame, Series
from pandas_ta.overlap import hl2
from pandas_ta.utils import get_offset, high_low_range, verify_series


[docs]def fisher(high, low, length=None, signal=None, offset=None, **kwargs): """Indicator: Fisher Transform (FISHT)""" # Validate Arguments length = int(length) if length and length > 0 else 9 signal = int(signal) if signal and signal > 0 else 1 _length = max(length, signal) high = verify_series(high, _length) low = verify_series(low, _length) offset = get_offset(offset) if high is None or low is None: return # Calculate Result hl2_ = hl2(high, low) highest_hl2 = hl2_.rolling(length).max() lowest_hl2 = hl2_.rolling(length).min() hlr = high_low_range(highest_hl2, lowest_hl2) hlr[hlr < 0.001] = 0.001 position = ((hl2_ - lowest_hl2) / hlr) - 0.5 v = 0 m = high.size result = [npNaN for _ in range(0, length - 1)] + [0] for i in range(length, m): v = 0.66 * position.iloc[i] + 0.67 * v if v < -0.99: v = -0.999 if v > 0.99: v = 0.999 result.append(0.5 * (nplog((1 + v) / (1 - v)) + result[i - 1])) fisher = Series(result, index=high.index) signalma = fisher.shift(signal) # Offset if offset != 0: fisher = fisher.shift(offset) signalma = signalma.shift(offset) # Handle fills if "fillna" in kwargs: fisher.fillna(kwargs["fillna"], inplace=True) signalma.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: fisher.fillna(method=kwargs["fill_method"], inplace=True) signalma.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it _props = f"_{length}_{signal}" fisher.name = f"FISHERT{_props}" signalma.name = f"FISHERTs{_props}" fisher.category = signalma.category = "momentum" # Prepare DataFrame to return data = {fisher.name: fisher, signalma.name: signalma} df = DataFrame(data) df.name = f"FISHERT{_props}" df.category = fisher.category return df
fisher.__doc__ = \ """Fisher Transform (FISHT) Attempts to identify significant price reversals by normalizing prices over a user-specified number of periods. A reversal signal is suggested when the the two lines cross. Sources: TradingView (Correlation >99%) Calculation: Default Inputs: length=9, signal=1 HL2 = hl2(high, low) HHL2 = HL2.rolling(length).max() LHL2 = HL2.rolling(length).min() HLR = HHL2 - LHL2 HLR[HLR < 0.001] = 0.001 position = ((HL2 - LHL2) / HLR) - 0.5 v = 0 m = high.size FISHER = [npNaN for _ in range(0, length - 1)] + [0] for i in range(length, m): v = 0.66 * position[i] + 0.67 * v if v < -0.99: v = -0.999 if v > 0.99: v = 0.999 FISHER.append(0.5 * (nplog((1 + v) / (1 - v)) + FISHER[i - 1])) SIGNAL = FISHER.shift(signal) Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's length (int): Fisher period. Default: 9 signal (int): Fisher Signal period. Default: 1 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """