# -*- coding: utf-8 -*-
from pandas_ta.overlap import linreg
from pandas_ta.volatility import rvi
from pandas_ta.utils import get_drift, get_offset, verify_series
[docs]def inertia(close=None, high=None, low=None, length=None, rvi_length=None, scalar=None, refined=None, thirds=None, mamode=None, drift=None, offset=None, **kwargs):
    """Indicator: Inertia (INERTIA)"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 20
    rvi_length = int(rvi_length) if rvi_length and rvi_length > 0 else 14
    scalar = float(scalar) if scalar and scalar > 0 else 100
    refined = False if refined is None else True
    thirds = False if thirds is None else True
    mamode = mamode if isinstance(mamode, str) else "ema"
    _length = max(length, rvi_length)
    close = verify_series(close, _length)
    drift = get_drift(drift)
    offset = get_offset(offset)
    if close is None: return
    if refined or thirds:
        high = verify_series(high, _length)
        low = verify_series(low, _length)
        if high is None or low is None: return
    # Calculate Result
    if refined:
        _mode, rvi_ = "r", rvi(close, high=high, low=low, length=rvi_length, scalar=scalar, refined=refined, mamode=mamode)
    elif thirds:
        _mode, rvi_ = "t", rvi(close, high=high, low=low, length=rvi_length, scalar=scalar, thirds=thirds, mamode=mamode)
    else:
        _mode, rvi_ = "",  rvi(close, length=rvi_length, scalar=scalar, mamode=mamode)
    inertia = linreg(rvi_, length=length)
    # Offset
    if offset != 0:
        inertia = inertia.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        inertia.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        inertia.fillna(method=kwargs["fill_method"], inplace=True)
    # Name & Category
    _props = f"_{length}_{rvi_length}"
    inertia.name = f"INERTIA{_mode}{_props}"
    inertia.category = "momentum"
    return inertia 
inertia.__doc__ = \
"""Inertia (INERTIA)
Inertia was developed by Donald Dorsey and was introduced his article
in September, 1995. It is the Relative Vigor Index smoothed by the Least
Squares Moving Average. Postive Inertia when values are greater than 50,
Negative Inertia otherwise.
Sources:
    https://www.investopedia.com/terms/r/relative_vigor_index.asp
Calculation:
    Default Inputs:
        length=14, ma_length=20
    LSQRMA = Least Squares Moving Average
    INERTIA = LSQRMA(RVI(length), ma_length)
Args:
    open_ (pd.Series): Series of 'open's
    high (pd.Series): Series of 'high's
    low (pd.Series): Series of 'low's
    close (pd.Series): Series of 'close's
    length (int): It's period. Default: 20
    rvi_length (int): RVI period. Default: 14
    refined (bool): Use 'refined' calculation. Default: False
    thirds (bool): Use 'thirds' calculation. Default: False
    mamode (str): See ```help(ta.ma)```. Default: 'ema'
    drift (int): The difference period. Default: 1
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.Series: New feature generated.
"""