Source code for pandas_ta.momentum.kdj

# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta.overlap import rma
from pandas_ta.utils import get_offset, non_zero_range, verify_series


[docs]def kdj(high=None, low=None, close=None, length=None, signal=None, offset=None, **kwargs): """Indicator: KDJ (KDJ)""" # Validate Arguments length = int(length) if length and length > 0 else 9 signal = int(signal) if signal and signal > 0 else 3 _length = max(length, signal) high = verify_series(high, _length) low = verify_series(low, _length) close = verify_series(close, _length) offset = get_offset(offset) if high is None or low is None or close is None: return # Calculate Result highest_high = high.rolling(length).max() lowest_low = low.rolling(length).min() fastk = 100 * (close - lowest_low) / non_zero_range(highest_high, lowest_low) k = rma(fastk, length=signal) d = rma(k, length=signal) j = 3 * k - 2 * d # Offset if offset != 0: k = k.shift(offset) d = d.shift(offset) j = j.shift(offset) # Handle fills if "fillna" in kwargs: k.fillna(kwargs["fillna"], inplace=True) d.fillna(kwargs["fillna"], inplace=True) j.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: k.fillna(method=kwargs["fill_method"], inplace=True) d.fillna(method=kwargs["fill_method"], inplace=True) j.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it _params = f"_{length}_{signal}" k.name = f"K{_params}" d.name = f"D{_params}" j.name = f"J{_params}" k.category = d.category = j.category = "momentum" # Prepare DataFrame to return kdjdf = DataFrame({k.name: k, d.name: d, j.name: j}) kdjdf.name = f"KDJ{_params}" kdjdf.category = "momentum" return kdjdf
kdj.__doc__ = \ """KDJ (KDJ) The KDJ indicator is actually a derived form of the Slow Stochastic with the only difference being an extra line called the J line. The J line represents the divergence of the %D value from the %K. The value of J can go beyond [0, 100] for %K and %D lines on the chart. Sources: https://www.prorealcode.com/prorealtime-indicators/kdj/ https://docs.anychart.com/Stock_Charts/Technical_Indicators/Mathematical_Description#kdj Calculation: Default Inputs: length=9, signal=3 LL = low for last 9 periods HH = high for last 9 periods FAST_K = 100 * (close - LL) / (HH - LL) K = RMA(FAST_K, signal) D = RMA(K, signal) J = 3K - 2D Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's length (int): Default: 9 signal (int): Default: 3 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """