# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta.overlap import ema
from pandas_ta.utils import get_offset, verify_series
[docs]def pvo(volume, fast=None, slow=None, signal=None, scalar=None, offset=None, **kwargs):
    """Indicator: Percentage Volume Oscillator (PVO)"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 12
    slow = int(slow) if slow and slow > 0 else 26
    signal = int(signal) if signal and signal > 0 else 9
    scalar = float(scalar) if scalar else 100
    if slow < fast:
        fast, slow = slow, fast
    volume = verify_series(volume, max(fast, slow, signal))
    offset = get_offset(offset)
    if volume is None: return
    # Calculate Result
    fastma = ema(volume, length=fast)
    slowma = ema(volume, length=slow)
    pvo = scalar * (fastma - slowma)
    pvo /= slowma
    signalma = ema(pvo, length=signal)
    histogram = pvo - signalma
    # Offset
    if offset != 0:
        pvo = pvo.shift(offset)
        histogram = histogram.shift(offset)
        signalma = signalma.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        pvo.fillna(kwargs["fillna"], inplace=True)
        histogram.fillna(kwargs["fillna"], inplace=True)
        signalma.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        pvo.fillna(method=kwargs["fill_method"], inplace=True)
        histogram.fillna(method=kwargs["fill_method"], inplace=True)
        signalma.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    _props = f"_{fast}_{slow}_{signal}"
    pvo.name = f"PVO{_props}"
    histogram.name = f"PVOh{_props}"
    signalma.name = f"PVOs{_props}"
    pvo.category = histogram.category = signalma.category = "momentum"
    #
    data = {pvo.name: pvo, histogram.name: histogram, signalma.name: signalma}
    df = DataFrame(data)
    df.name = pvo.name
    df.category = pvo.category
    return df 
pvo.__doc__ = \
"""Percentage Volume Oscillator (PVO)
Percentage Volume Oscillator is a Momentum Oscillator for Volume.
Sources:
    https://www.fmlabs.com/reference/default.htm?url=PVO.htm
Calculation:
    Default Inputs:
        fast=12, slow=26, signal=9
    EMA = Exponential Moving Average
    PVO = (EMA(volume, fast) - EMA(volume, slow)) / EMA(volume, slow)
    Signal = EMA(PVO, signal)
    Histogram = PVO - Signal
Args:
    volume (pd.Series): Series of 'volume's
    fast (int): The short period. Default: 12
    slow (int): The long period. Default: 26
    signal (int): The signal period. Default: 9
    scalar (float): How much to magnify. Default: 100
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.DataFrame: pvo, histogram, signal columns.
"""