Source code for pandas_ta.momentum.trix

# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta.overlap.ema import ema
from pandas_ta.utils import get_drift, get_offset, verify_series


[docs]def trix(close, length=None, signal=None, scalar=None, drift=None, offset=None, **kwargs): """Indicator: Trix (TRIX)""" # Validate Arguments length = int(length) if length and length > 0 else 30 signal = int(signal) if signal and signal > 0 else 9 scalar = float(scalar) if scalar else 100 close = verify_series(close, max(length, signal)) drift = get_drift(drift) offset = get_offset(offset) if close is None: return # Calculate Result ema1 = ema(close=close, length=length, **kwargs) ema2 = ema(close=ema1, length=length, **kwargs) ema3 = ema(close=ema2, length=length, **kwargs) trix = scalar * ema3.pct_change(drift) trix_signal = trix.rolling(signal).mean() # Offset if offset != 0: trix = trix.shift(offset) trix_signal = trix_signal.shift(offset) # Handle fills if "fillna" in kwargs: trix.fillna(kwargs["fillna"], inplace=True) trix_signal.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: trix.fillna(method=kwargs["fill_method"], inplace=True) trix_signal.fillna(method=kwargs["fill_method"], inplace=True) # Name & Category trix.name = f"TRIX_{length}_{signal}" trix_signal.name = f"TRIXs_{length}_{signal}" trix.category = trix_signal.category = "momentum" # Prepare DataFrame to return df = DataFrame({trix.name: trix, trix_signal.name: trix_signal}) df.name = f"TRIX_{length}_{signal}" df.category = "momentum" return df
trix.__doc__ = \ """Trix (TRIX) TRIX is a momentum oscillator to identify divergences. Sources: https://www.tradingview.com/wiki/TRIX Calculation: Default Inputs: length=18, drift=1 EMA = Exponential Moving Average ROC = Rate of Change ema1 = EMA(close, length) ema2 = EMA(ema1, length) ema3 = EMA(ema2, length) TRIX = 100 * ROC(ema3, drift) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 18 signal (int): It's period. Default: 9 scalar (float): How much to magnify. Default: 100 drift (int): The difference period. Default: 1 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """