Source code for pandas_ta.overlap.hma
# -*- coding: utf-8 -*-
from numpy import sqrt as npSqrt
from .wma import wma
from pandas_ta.utils import get_offset, verify_series
[docs]def hma(close, length=None, offset=None, **kwargs):
"""Indicator: Hull Moving Average (HMA)"""
# Validate Arguments
length = int(length) if length and length > 0 else 10
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
half_length = int(length / 2)
sqrt_length = int(npSqrt(length))
wmaf = wma(close=close, length=half_length)
wmas = wma(close=close, length=length)
hma = wma(close=2 * wmaf - wmas, length=sqrt_length)
# Offset
if offset != 0:
hma = hma.shift(offset)
# Handle fills
if "fillna" in kwargs:
hma.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
hma.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
hma.name = f"HMA_{length}"
hma.category = "overlap"
return hma
hma.__doc__ = \
"""Hull Moving Average (HMA)
The Hull Exponential Moving Average attempts to reduce or remove lag in moving
averages.
Sources:
https://alanhull.com/hull-moving-average
Calculation:
Default Inputs:
length=10
WMA = Weighted Moving Average
half_length = int(0.5 * length)
sqrt_length = int(sqrt(length))
wmaf = WMA(close, half_length)
wmas = WMA(close, length)
HMA = WMA(2 * wmaf - wmas, sqrt_length)
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 10
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""