Source code for pandas_ta.overlap.sinwma
# -*- coding: utf-8 -*-
from numpy import pi as npPi
from numpy import sin as npSin
from pandas import Series
from pandas_ta.utils import get_offset, verify_series, weights
[docs]def sinwma(close, length=None, offset=None, **kwargs):
"""Indicator: Sine Weighted Moving Average (SINWMA) by Everget of TradingView"""
# Validate Arguments
length = int(length) if length and length > 0 else 14
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
sines = Series([npSin((i + 1) * npPi / (length + 1)) for i in range(0, length)])
w = sines / sines.sum()
sinwma = close.rolling(length, min_periods=length).apply(weights(w), raw=True)
# Offset
if offset != 0:
sinwma = sinwma.shift(offset)
# Handle fills
if "fillna" in kwargs:
sinwma.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
sinwma.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
sinwma.name = f"SINWMA_{length}"
sinwma.category = "overlap"
return sinwma
sinwma.__doc__ = \
"""Sine Weighted Moving Average (SWMA)
A weighted average using sine cycles. The middle term(s) of the average have the
highest weight(s).
Source:
https://www.tradingview.com/script/6MWFvnPO-Sine-Weighted-Moving-Average/
Author: Everget (https://www.tradingview.com/u/everget/)
Calculation:
Default Inputs:
length=10
def weights(w):
def _compute(x):
return np.dot(w * x)
return _compute
sines = Series([sin((i + 1) * pi / (length + 1)) for i in range(0, length)])
w = sines / sines.sum()
SINWMA = close.rolling(length, min_periods=length).apply(weights(w), raw=True)
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 10
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""