Source code for pandas_ta.overlap.t3

# -*- coding: utf-8 -*-
from .ema import ema
from pandas_ta import Imports
from pandas_ta.utils import get_offset, verify_series


[docs]def t3(close, length=None, a=None, talib=None, offset=None, **kwargs): """Indicator: T3""" # Validate Arguments length = int(length) if length and length > 0 else 10 a = float(a) if a and a > 0 and a < 1 else 0.7 close = verify_series(close, length) offset = get_offset(offset) mode_tal = bool(talib) if isinstance(talib, bool) else True if close is None: return # Calculate Result if Imports["talib"] and mode_tal: from talib import T3 t3 = T3(close, length, a) else: c1 = -a * a**2 c2 = 3 * a**2 + 3 * a**3 c3 = -6 * a**2 - 3 * a - 3 * a**3 c4 = a**3 + 3 * a**2 + 3 * a + 1 e1 = ema(close=close, length=length, **kwargs) e2 = ema(close=e1, length=length, **kwargs) e3 = ema(close=e2, length=length, **kwargs) e4 = ema(close=e3, length=length, **kwargs) e5 = ema(close=e4, length=length, **kwargs) e6 = ema(close=e5, length=length, **kwargs) t3 = c1 * e6 + c2 * e5 + c3 * e4 + c4 * e3 # Offset if offset != 0: t3 = t3.shift(offset) # Handle fills if "fillna" in kwargs: t3.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: t3.fillna(method=kwargs["fill_method"], inplace=True) # Name & Category t3.name = f"T3_{length}_{a}" t3.category = "overlap" return t3
t3.__doc__ = """Tim Tillson's T3 Moving Average (T3) Tim Tillson's T3 Moving Average is considered a smoother and more responsive moving average relative to other moving averages. Sources: http://www.binarytribune.com/forex-trading-indicators/t3-moving-average-indicator/ Calculation: Default Inputs: length=10, a=0.7 c1 = -a^3 c2 = 3a^2 + 3a^3 = 3a^2 * (1 + a) c3 = -6a^2 - 3a - 3a^3 c4 = a^3 + 3a^2 + 3a + 1 ema1 = EMA(close, length) ema2 = EMA(ema1, length) ema3 = EMA(ema2, length) ema4 = EMA(ema3, length) ema5 = EMA(ema4, length) ema6 = EMA(ema5, length) T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3 Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 a (float): 0 < a < 1. Default: 0.7 talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib version. Default: True offset (int): How many periods to offset the result. Default: 0 Kwargs: adjust (bool): Default: True presma (bool, optional): If True, uses SMA for initial value. fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """