Source code for pandas_ta.overlap.vwap
# -*- coding: utf-8 -*-
from .hlc3 import hlc3
from pandas_ta.utils import get_offset, is_datetime_ordered, verify_series
[docs]def vwap(high, low, close, volume, anchor=None, offset=None, **kwargs):
"""Indicator: Volume Weighted Average Price (VWAP)"""
# Validate Arguments
high = verify_series(high)
low = verify_series(low)
close = verify_series(close)
volume = verify_series(volume)
anchor = anchor.upper() if anchor and isinstance(anchor, str) and len(anchor) >= 1 else "D"
offset = get_offset(offset)
typical_price = hlc3(high=high, low=low, close=close)
if not is_datetime_ordered(volume):
print(f"[!] VWAP volume series is not datetime ordered. Results may not be as expected.")
if not is_datetime_ordered(typical_price):
print(f"[!] VWAP price series is not datetime ordered. Results may not be as expected.")
# Calculate Result
wp = typical_price * volume
vwap = wp.groupby(wp.index.to_period(anchor)).cumsum()
vwap /= volume.groupby(volume.index.to_period(anchor)).cumsum()
# Offset
if offset != 0:
vwap = vwap.shift(offset)
# Handle fills
if "fillna" in kwargs:
vwap.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
vwap.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
vwap.name = f"VWAP_{anchor}"
vwap.category = "overlap"
return vwap
vwap.__doc__ = \
"""Volume Weighted Average Price (VWAP)
The Volume Weighted Average Price that measures the average typical price
by volume. It is typically used with intraday charts to identify general
direction.
Sources:
https://www.tradingview.com/wiki/Volume_Weighted_Average_Price_(VWAP)
https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/volume-weighted-average-price-vwap/
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:vwap_intraday
Calculation:
tp = typical_price = hlc3(high, low, close)
tpv = tp * volume
VWAP = tpv.cumsum() / volume.cumsum()
Args:
high (pd.Series): Series of 'high's
low (pd.Series): Series of 'low's
close (pd.Series): Series of 'close's
volume (pd.Series): Series of 'volume's
anchor (str): How to anchor VWAP. Depending on the index values, it will
implement various Timeseries Offset Aliases as listed here:
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
Default: "D".
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""