Source code for pandas_ta.overlap.vwma
# -*- coding: utf-8 -*-
from .sma import sma
from pandas_ta.utils import get_offset, verify_series
[docs]def vwma(close, volume, length=None, offset=None, **kwargs):
"""Indicator: Volume Weighted Moving Average (VWMA)"""
# Validate Arguments
length = int(length) if length and length > 0 else 10
close = verify_series(close, length)
volume = verify_series(volume, length)
offset = get_offset(offset)
if close is None or volume is None: return
# Calculate Result
pv = close * volume
vwma = sma(close=pv, length=length) / sma(close=volume, length=length)
# Offset
if offset != 0:
vwma = vwma.shift(offset)
# Handle fills
if "fillna" in kwargs:
vwma.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
vwma.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
vwma.name = f"VWMA_{length}"
vwma.category = "overlap"
return vwma
vwma.__doc__ = \
"""Volume Weighted Moving Average (VWMA)
Volume Weighted Moving Average.
Sources:
https://www.motivewave.com/studies/volume_weighted_moving_average.htm
Calculation:
Default Inputs:
length=10
SMA = Simple Moving Average
pv = close * volume
VWMA = SMA(pv, length) / SMA(volume, length)
Args:
close (pd.Series): Series of 'close's
volume (pd.Series): Series of 'volume's
length (int): It's period. Default: 10
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""