Source code for pandas_ta.performance.log_return
# -*- coding: utf-8 -*-
from numpy import log as nplog
from pandas_ta.utils import get_offset, verify_series
[docs]def log_return(close, length=None, cumulative=None, offset=None, **kwargs):
"""Indicator: Log Return"""
# Validate Arguments
length = int(length) if length and length > 0 else 1
cumulative = bool(cumulative) if cumulative is not None and cumulative else False
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
if cumulative:
# log_return = nplog(close).diff(length).cumsum()
log_return = nplog(close / close.iloc[0])
else:
log_return = nplog(close / close.shift(length)) # nplog(close).diff(length)
# Offset
if offset != 0:
log_return = log_return.shift(offset)
# Handle fills
if "fillna" in kwargs:
log_return.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
log_return.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
log_return.name = f"{'CUM' if cumulative else ''}LOGRET_{length}"
log_return.category = "performance"
return log_return
log_return.__doc__ = \
"""Log Return
Calculates the logarithmic return of a Series.
See also: help(df.ta.log_return) for additional **kwargs a valid 'df'.
Sources:
https://stackoverflow.com/questions/31287552/logarithmic-returns-in-pandas-dataframe
Calculation:
Default Inputs:
length=1, cumulative=False
LOGRET = log( close.diff(periods=length) )
CUMLOGRET = LOGRET.cumsum() if cumulative
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 20
cumulative (bool): If True, returns the cumulative returns. Default: False
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""