Source code for pandas_ta.statistics.entropy
# -*- coding: utf-8 -*-
from numpy import log as npLog
from pandas_ta.utils import get_offset, verify_series
[docs]def entropy(close, length=None, base=None, offset=None, **kwargs):
"""Indicator: Entropy (ENTP)"""
# Validate Arguments
length = int(length) if length and length > 0 else 10
base = float(base) if base and base > 0 else 2.0
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
p = close / close.rolling(length).sum()
entropy = (-p * npLog(p) / npLog(base)).rolling(length).sum()
# Offset
if offset != 0:
entropy = entropy.shift(offset)
# Handle fills
if "fillna" in kwargs:
entropy.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
entropy.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
entropy.name = f"ENTP_{length}"
entropy.category = "statistics"
return entropy
entropy.__doc__ = \
"""Entropy (ENTP)
Introduced by Claude Shannon in 1948, entropy measures the unpredictability
of the data, or equivalently, of its average information. A die has higher
entropy (p=1/6) versus a coin (p=1/2).
Sources:
https://en.wikipedia.org/wiki/Entropy_(information_theory)
Calculation:
Default Inputs:
length=10, base=2
P = close / SUM(close, length)
E = SUM(-P * npLog(P) / npLog(base), length)
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 10
base (float): Logarithmic Base. Default: 2
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""