Source code for pandas_ta.statistics.zscore
# -*- coding: utf-8 -*-
from pandas_ta.overlap import sma
from .stdev import stdev
from pandas_ta.utils import get_offset, verify_series
[docs]def zscore(close, length=None, std=None, offset=None, **kwargs):
"""Indicator: Z Score"""
# Validate Arguments
length = int(length) if length and length > 1 else 30
std = float(std) if std and std > 1 else 1
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
std *= stdev(close=close, length=length, **kwargs)
mean = sma(close=close, length=length, **kwargs)
zscore = (close - mean) / std
# Offset
if offset != 0:
zscore = zscore.shift(offset)
# Handle fills
if "fillna" in kwargs:
zscore.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
zscore.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
zscore.name = f"ZS_{length}"
zscore.category = "statistics"
return zscore
zscore.__doc__ = \
"""Rolling Z Score
Sources:
Calculation:
Default Inputs:
length=30, std=1
SMA = Simple Moving Average
STDEV = Standard Deviation
std = std * STDEV(close, length)
mean = SMA(close, length)
ZSCORE = (close - mean) / std
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 30
std (float): It's period. Default: 1
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""