Source code for pandas_ta.statistics.zscore

# -*- coding: utf-8 -*-
from pandas_ta.overlap import sma
from .stdev import stdev
from pandas_ta.utils import get_offset, verify_series


[docs]def zscore(close, length=None, std=None, offset=None, **kwargs): """Indicator: Z Score""" # Validate Arguments length = int(length) if length and length > 1 else 30 std = float(std) if std and std > 1 else 1 close = verify_series(close, length) offset = get_offset(offset) if close is None: return # Calculate Result std *= stdev(close=close, length=length, **kwargs) mean = sma(close=close, length=length, **kwargs) zscore = (close - mean) / std # Offset if offset != 0: zscore = zscore.shift(offset) # Handle fills if "fillna" in kwargs: zscore.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: zscore.fillna(method=kwargs["fill_method"], inplace=True) # Name & Category zscore.name = f"ZS_{length}" zscore.category = "statistics" return zscore
zscore.__doc__ = \ """Rolling Z Score Sources: Calculation: Default Inputs: length=30, std=1 SMA = Simple Moving Average STDEV = Standard Deviation std = std * STDEV(close, length) mean = SMA(close, length) ZSCORE = (close - mean) / std Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 30 std (float): It's period. Default: 1 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """