Source code for pandas_ta.trend.aroon

# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta import Imports
from pandas_ta.utils import get_offset, verify_series
from pandas_ta.utils import recent_maximum_index, recent_minimum_index


[docs]def aroon(high, low, length=None, scalar=None, talib=None, offset=None, **kwargs): """Indicator: Aroon & Aroon Oscillator""" # Validate Arguments length = length if length and length > 0 else 14 scalar = float(scalar) if scalar else 100 high = verify_series(high, length) low = verify_series(low, length) offset = get_offset(offset) mode_tal = bool(talib) if isinstance(talib, bool) else True if high is None or low is None: return # Calculate Result if Imports["talib"] and mode_tal: from talib import AROON, AROONOSC aroon_down, aroon_up = AROON(high, low, length) aroon_osc = AROONOSC(high, low, length) else: periods_from_hh = high.rolling(length + 1).apply(recent_maximum_index, raw=True) periods_from_ll = low.rolling(length + 1).apply(recent_minimum_index, raw=True) aroon_up = aroon_down = scalar aroon_up *= 1 - (periods_from_hh / length) aroon_down *= 1 - (periods_from_ll / length) aroon_osc = aroon_up - aroon_down # Handle fills if "fillna" in kwargs: aroon_up.fillna(kwargs["fillna"], inplace=True) aroon_down.fillna(kwargs["fillna"], inplace=True) aroon_osc.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: aroon_up.fillna(method=kwargs["fill_method"], inplace=True) aroon_down.fillna(method=kwargs["fill_method"], inplace=True) aroon_osc.fillna(method=kwargs["fill_method"], inplace=True) # Offset if offset != 0: aroon_up = aroon_up.shift(offset) aroon_down = aroon_down.shift(offset) aroon_osc = aroon_osc.shift(offset) # Name and Categorize it aroon_up.name = f"AROONU_{length}" aroon_down.name = f"AROOND_{length}" aroon_osc.name = f"AROONOSC_{length}" aroon_down.category = aroon_up.category = aroon_osc.category = "trend" # Prepare DataFrame to return data = { aroon_down.name: aroon_down, aroon_up.name: aroon_up, aroon_osc.name: aroon_osc, } aroondf = DataFrame(data) aroondf.name = f"AROON_{length}" aroondf.category = aroon_down.category return aroondf
aroon.__doc__ = \ """Aroon & Aroon Oscillator (AROON) Aroon attempts to identify if a security is trending and how strong. Sources: https://www.tradingview.com/wiki/Aroon https://www.tradingtechnologies.com/help/x-study/technical-indicator-definitions/aroon-ar/ Calculation: Default Inputs: length=1, scalar=100 recent_maximum_index(x): return int(np.argmax(x[::-1])) recent_minimum_index(x): return int(np.argmin(x[::-1])) periods_from_hh = high.rolling(length + 1).apply(recent_maximum_index, raw=True) AROON_UP = scalar * (1 - (periods_from_hh / length)) periods_from_ll = low.rolling(length + 1).apply(recent_minimum_index, raw=True) AROON_DN = scalar * (1 - (periods_from_ll / length)) AROON_OSC = AROON_UP - AROON_DN Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 14 scalar (float): How much to magnify. Default: 100 talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib version. Default: True offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.DataFrame: aroon_up, aroon_down, aroon_osc columns. """