# -*- coding: utf-8 -*-
from pandas_ta.utils import get_drift, get_offset, is_percent, verify_series
[docs]def increasing(close, length=None, strict=None, asint=None, percent=None, drift=None, offset=None, **kwargs):
    """Indicator: Increasing"""
    # Validate Arguments
    length = int(length) if length and length > 0 else 1
    strict = strict if isinstance(strict, bool) else False
    asint = asint if isinstance(asint, bool) else True
    close = verify_series(close, length)
    drift = get_drift(drift)
    offset = get_offset(offset)
    percent = float(percent) if is_percent(percent) else False
    if close is None: return
    # Calculate Result
    close_ = (1 + 0.01 * percent) * close if percent else close
    if strict:
        # Returns value as float64? Have to cast to bool
        increasing = close > close_.shift(drift)
        for x in range(3, length + 1):
            increasing = increasing & (close.shift(x - (drift + 1)) > close_.shift(x - drift))
        increasing.fillna(0, inplace=True)
        increasing = increasing.astype(bool)
    else:
        increasing = close_.diff(length) > 0
    if asint:
        increasing = increasing.astype(int)
    # Offset
    if offset != 0:
        increasing = increasing.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        increasing.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        increasing.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    _percent = f"_{0.01 * percent}" if percent else ''
    _props = f"{'S' if strict else ''}INC{'p' if percent else ''}"
    increasing.name = f"{_props}_{length}{_percent}"
    increasing.category = "trend"
    return increasing 
increasing.__doc__ = \
"""Increasing
Returns True if the series is increasing over a period, False otherwise.
If the kwarg 'strict' is True, it returns True if it is continuously increasing
over the period. When using the kwarg 'asint', then it returns 1 for True
or 0 for False.
Calculation:
    if strict:
        increasing = all(i < j for i, j in zip(close[-length:], close[1:]))
    else:
        increasing = close.diff(length) > 0
    if asint:
        increasing = increasing.astype(int)
Args:
    close (pd.Series): Series of 'close's
    length (int): It's period. Default: 1
    strict (bool): If True, checks if the series is continuously increasing over the period. Default: False
    percent (float): Percent as an integer. Default: None
    asint (bool): Returns as binary. Default: True
    drift (int): The difference period. Default: 1
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.Series: New feature generated.
"""