Source code for pandas_ta.trend.vhf
# -*- coding: utf-8 -*-
from numpy import fabs as npFabs
from pandas_ta.utils import get_drift, get_offset, non_zero_range, verify_series
[docs]def vhf(close, length=None, drift=None, offset=None, **kwargs):
"""Indicator: Vertical Horizontal Filter (VHF)"""
# Validate arguments
length = int(length) if length and length > 0 else 28
close = verify_series(close, length)
drift = get_drift(drift)
offset = get_offset(offset)
if close is None: return
# Calculate Result
hcp = close.rolling(length).max()
lcp = close.rolling(length).min()
diff = npFabs(close.diff(drift))
vhf = npFabs(non_zero_range(hcp, lcp)) / diff.rolling(length).sum()
# Offset
if offset != 0:
vhf = vhf.shift(offset)
# Handle fills
if "fillna" in kwargs:
vhf.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
vhf.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
vhf.name = f"VHF_{length}"
vhf.category = "trend"
return vhf
vhf.__doc__ = \
"""Vertical Horizontal Filter (VHF)
VHF was created by Adam White to identify trending and ranging markets.
Sources:
https://www.incrediblecharts.com/indicators/vertical_horizontal_filter.php
Calculation:
Default Inputs:
length = 28
HCP = Highest Close Price in Period
LCP = Lowest Close Price in Period
Change = abs(Ct - Ct-1)
VHF = (HCP - LCP) / RollingSum[length] of Change
Args:
source (pd.Series): Series of prices (usually close).
length (int): The period length. Default: 28
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""