# -*- coding: utf-8 -*-
# from numpy import sqrt as npsqrt
from pandas import DataFrame
from .atr import atr
from pandas_ta.overlap import hlc3, sma
from pandas_ta.utils import get_offset, verify_series
[docs]def aberration(high, low, close, length=None, atr_length=None, offset=None, **kwargs):
    """Indicator: Aberration (ABER)"""
    # Validate arguments
    length = int(length) if length and length > 0 else 5
    atr_length = int(atr_length) if atr_length and atr_length > 0 else 15
    _length = max(atr_length, length)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    offset = get_offset(offset)
    if high is None or low is None or close is None: return
    # Calculate Result
    atr_ = atr(high=high, low=low, close=close, length=atr_length)
    jg = hlc3(high=high, low=low, close=close)
    zg = sma(jg, length)
    sg = zg + atr_
    xg = zg - atr_
    # Offset
    if offset != 0:
        zg = zg.shift(offset)
        sg = sg.shift(offset)
        xg = xg.shift(offset)
        atr_ = atr_.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        zg.fillna(kwargs["fillna"], inplace=True)
        sg.fillna(kwargs["fillna"], inplace=True)
        xg.fillna(kwargs["fillna"], inplace=True)
        atr_.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        zg.fillna(method=kwargs["fill_method"], inplace=True)
        sg.fillna(method=kwargs["fill_method"], inplace=True)
        xg.fillna(method=kwargs["fill_method"], inplace=True)
        atr_.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    _props = f"_{length}_{atr_length}"
    zg.name = f"ABER_ZG{_props}"
    sg.name = f"ABER_SG{_props}"
    xg.name = f"ABER_XG{_props}"
    atr_.name = f"ABER_ATR{_props}"
    zg.category = sg.category = "volatility"
    xg.category = atr_.category = zg.category
    # Prepare DataFrame to return
    data = {zg.name: zg, sg.name: sg, xg.name: xg, atr_.name: atr_}
    aberdf = DataFrame(data)
    aberdf.name = f"ABER{_props}"
    aberdf.category = zg.category
    return aberdf 
aberration.__doc__ = \
"""Aberration
A volatility indicator similar to Keltner Channels.
Sources:
    Few internet resources on definitive definition.
    Request by Github user homily, issue #46
Calculation:
    Default Inputs:
        length=5, atr_length=15
    ATR = Average True Range
    SMA = Simple Moving Average
    ATR = ATR(length=atr_length)
    JG = TP = HLC3(high, low, close)
    ZG = SMA(JG, length)
    SG = ZG + ATR
    XG = ZG - ATR
Args:
    high (pd.Series): Series of 'high's
    low (pd.Series): Series of 'low's
    close (pd.Series): Series of 'close's
    length (int): The short period. Default: 5
    atr_length (int): The short period. Default: 15
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.DataFrame: zg, sg, xg, atr columns.
"""