Source code for pandas_ta.volatility.kc

# -*- coding: utf-8 -*-
from pandas import DataFrame
from .true_range import true_range
from pandas_ta.overlap import ma
from pandas_ta.utils import get_offset, high_low_range, verify_series


[docs]def kc(high, low, close, length=None, scalar=None, mamode=None, offset=None, **kwargs): """Indicator: Keltner Channels (KC)""" # Validate arguments length = int(length) if length and length > 0 else 20 scalar = float(scalar) if scalar and scalar > 0 else 2 mamode = mamode if isinstance(mamode, str) else "ema" high = verify_series(high, length) low = verify_series(low, length) close = verify_series(close, length) offset = get_offset(offset) if high is None or low is None or close is None: return # Calculate Result use_tr = kwargs.pop("tr", True) if use_tr: range_ = true_range(high, low, close) else: range_ = high_low_range(high, low) basis = ma(mamode, close, length=length) band = ma(mamode, range_, length=length) lower = basis - scalar * band upper = basis + scalar * band # Offset if offset != 0: lower = lower.shift(offset) basis = basis.shift(offset) upper = upper.shift(offset) # Handle fills if "fillna" in kwargs: lower.fillna(kwargs["fillna"], inplace=True) basis.fillna(kwargs["fillna"], inplace=True) upper.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: lower.fillna(method=kwargs["fill_method"], inplace=True) basis.fillna(method=kwargs["fill_method"], inplace=True) upper.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it _props = f"{mamode.lower()[0] if len(mamode) else ''}_{length}_{scalar}" lower.name = f"KCL{_props}" basis.name = f"KCB{_props}" upper.name = f"KCU{_props}" basis.category = upper.category = lower.category = "volatility" # Prepare DataFrame to return data = {lower.name: lower, basis.name: basis, upper.name: upper} kcdf = DataFrame(data) kcdf.name = f"KC{_props}" kcdf.category = basis.category return kcdf
kc.__doc__ = \ """Keltner Channels (KC) A popular volatility indicator similar to Bollinger Bands and Donchian Channels. Sources: https://www.tradingview.com/wiki/Keltner_Channels_(KC) Calculation: Default Inputs: length=20, scalar=2, mamode=None, tr=True TR = True Range SMA = Simple Moving Average EMA = Exponential Moving Average if tr: RANGE = TR(high, low, close) else: RANGE = high - low if mamode == "ema": BASIS = sma(close, length) BAND = sma(RANGE, length) elif mamode == "sma": BASIS = sma(close, length) BAND = sma(RANGE, length) LOWER = BASIS - scalar * BAND UPPER = BASIS + scalar * BAND Args: high (pd.Series): Series of 'high's low (pd.Series): Series of 'low's close (pd.Series): Series of 'close's length (int): The short period. Default: 20 scalar (float): A positive float to scale the bands. Default: 2 mamode (str): See ```help(ta.ma)```. Default: 'ema' offset (int): How many periods to offset the result. Default: 0 Kwargs: tr (bool): When True, it uses True Range for calculation. When False, use a high - low as it's range calculation. Default: True fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.DataFrame: lower, basis, upper columns. """