Source code for pandas_ta.volatility.ui

# -*- coding: utf-8 -*-
from numpy import sqrt as npsqrt
from pandas_ta.overlap import sma
from pandas_ta.utils import get_offset, verify_series


[docs]def ui(close, length=None, scalar=None, offset=None, **kwargs): """Indicator: Ulcer Index (UI)""" # Validate arguments length = int(length) if length and length > 0 else 14 scalar = float(scalar) if scalar and scalar > 0 else 100 close = verify_series(close, length) offset = get_offset(offset) if close is None: return # Calculate Result highest_close = close.rolling(length).max() downside = scalar * (close - highest_close) downside /= highest_close d2 = downside * downside everget = kwargs.pop("everget", False) if everget: # Everget uses SMA instead of SUM for calculation ui = (sma(d2, length) / length).apply(npsqrt) else: ui = (d2.rolling(length).sum() / length).apply(npsqrt) # Offset if offset != 0: ui = ui.shift(offset) # Handle fills if "fillna" in kwargs: ui.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: ui.fillna(method=kwargs["fill_method"], inplace=True) # Name and Categorize it ui.name = f"UI{'' if not everget else 'e'}_{length}" ui.category = "volatility" return ui
ui.__doc__ = \ """Ulcer Index (UI) The Ulcer Index by Peter Martin measures the downside volatility with the use of the Quadratic Mean, which has the effect of emphasising large drawdowns. Sources: https://library.tradingtechnologies.com/trade/chrt-ti-ulcer-index.html https://en.wikipedia.org/wiki/Ulcer_index http://www.tangotools.com/ui/ui.htm Calculation: Default Inputs: length=14, scalar=100 HC = Highest Close SMA = Simple Moving Average HCN = HC(close, length) DOWNSIDE = scalar * (close - HCN) / HCN if kwargs["everget"]: UI = SQRT(SMA(DOWNSIDE^2, length) / length) else: UI = SQRT(SUM(DOWNSIDE^2, length) / length) Args: high (pd.Series): Series of 'high's close (pd.Series): Series of 'close's length (int): The short period. Default: 14 scalar (float): A positive float to scale the bands. Default: 100 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method everget (value, optional): TradingView's Evergets SMA instead of SUM calculation. Default: False Returns: pd.Series: New feature """