Source code for pandas_ta.volatility.ui
# -*- coding: utf-8 -*-
from numpy import sqrt as npsqrt
from pandas_ta.overlap import sma
from pandas_ta.utils import get_offset, verify_series
[docs]def ui(close, length=None, scalar=None, offset=None, **kwargs):
"""Indicator: Ulcer Index (UI)"""
# Validate arguments
length = int(length) if length and length > 0 else 14
scalar = float(scalar) if scalar and scalar > 0 else 100
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
highest_close = close.rolling(length).max()
downside = scalar * (close - highest_close)
downside /= highest_close
d2 = downside * downside
everget = kwargs.pop("everget", False)
if everget:
# Everget uses SMA instead of SUM for calculation
ui = (sma(d2, length) / length).apply(npsqrt)
else:
ui = (d2.rolling(length).sum() / length).apply(npsqrt)
# Offset
if offset != 0:
ui = ui.shift(offset)
# Handle fills
if "fillna" in kwargs:
ui.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
ui.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
ui.name = f"UI{'' if not everget else 'e'}_{length}"
ui.category = "volatility"
return ui
ui.__doc__ = \
"""Ulcer Index (UI)
The Ulcer Index by Peter Martin measures the downside volatility with the use of
the Quadratic Mean, which has the effect of emphasising large drawdowns.
Sources:
https://library.tradingtechnologies.com/trade/chrt-ti-ulcer-index.html
https://en.wikipedia.org/wiki/Ulcer_index
http://www.tangotools.com/ui/ui.htm
Calculation:
Default Inputs:
length=14, scalar=100
HC = Highest Close
SMA = Simple Moving Average
HCN = HC(close, length)
DOWNSIDE = scalar * (close - HCN) / HCN
if kwargs["everget"]:
UI = SQRT(SMA(DOWNSIDE^2, length) / length)
else:
UI = SQRT(SUM(DOWNSIDE^2, length) / length)
Args:
high (pd.Series): Series of 'high's
close (pd.Series): Series of 'close's
length (int): The short period. Default: 14
scalar (float): A positive float to scale the bands. Default: 100
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
everget (value, optional): TradingView's Evergets SMA instead of SUM
calculation. Default: False
Returns:
pd.Series: New feature
"""