# -*- coding: utf-8 -*-
from .ad import ad
from pandas_ta import Imports
from pandas_ta.overlap import ema
from pandas_ta.utils import get_offset, verify_series
[docs]def adosc(high, low, close, volume, open_=None, fast=None, slow=None, talib=None, offset=None, **kwargs):
    """Indicator: Accumulation/Distribution Oscillator"""
    # Validate Arguments
    fast = int(fast) if fast and fast > 0 else 3
    slow = int(slow) if slow and slow > 0 else 10
    _length = max(fast, slow)
    high = verify_series(high, _length)
    low = verify_series(low, _length)
    close = verify_series(close, _length)
    volume = verify_series(volume, _length)
    offset = get_offset(offset)
    if "length" in kwargs: kwargs.pop("length")
    mode_tal = bool(talib) if isinstance(talib, bool) else True
    if high is None or low is None or close is None or volume is None: return
    # Calculate Result
    if Imports["talib"] and mode_tal:
        from talib import ADOSC
        adosc = ADOSC(high, low, close, volume, fast, slow)
    else:
        ad_ = ad(high=high, low=low, close=close, volume=volume, open_=open_)
        fast_ad = ema(close=ad_, length=fast, **kwargs)
        slow_ad = ema(close=ad_, length=slow, **kwargs)
        adosc = fast_ad - slow_ad
    # Offset
    if offset != 0:
        adosc = adosc.shift(offset)
    # Handle fills
    if "fillna" in kwargs:
        adosc.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        adosc.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    adosc.name = f"ADOSC_{fast}_{slow}"
    adosc.category = "volume"
    return adosc 
adosc.__doc__ = \
"""Accumulation/Distribution Oscillator or Chaikin Oscillator
Accumulation/Distribution Oscillator indicator utilizes
Accumulation/Distribution and treats it similarily to MACD
or APO.
Sources:
    https://www.investopedia.com/articles/active-trading/031914/understanding-chaikin-oscillator.asp
Calculation:
    Default Inputs:
        fast=12, slow=26
    AD = Accum/Dist
    ad = AD(high, low, close, open)
    fast_ad = EMA(ad, fast)
    slow_ad = EMA(ad, slow)
    ADOSC = fast_ad - slow_ad
Args:
    high (pd.Series): Series of 'high's
    low (pd.Series): Series of 'low's
    close (pd.Series): Series of 'close's
    open (pd.Series): Series of 'open's
    volume (pd.Series): Series of 'volume's
    fast (int): The short period. Default: 12
    slow (int): The long period. Default: 26
    talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib
        version. Default: True
    offset (int): How many periods to offset the result. Default: 0
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
Returns:
    pd.Series: New feature generated.
"""