Source code for pandas_ta.volume.nvi
# -*- coding: utf-8 -*-
from pandas_ta.momentum import roc
from pandas_ta.utils import get_offset, signed_series, verify_series
[docs]def nvi(close, volume, length=None, initial=None, offset=None, **kwargs):
"""Indicator: Negative Volume Index (NVI)"""
# Validate arguments
length = int(length) if length and length > 0 else 1
# min_periods = int(kwargs["min_periods"]) if "min_periods" in kwargs and kwargs["min_periods"] is not None else length
initial = int(initial) if initial and initial > 0 else 1000
close = verify_series(close, length)
volume = verify_series(volume, length)
offset = get_offset(offset)
if close is None or volume is None: return
# Calculate Result
roc_ = roc(close=close, length=length)
signed_volume = signed_series(volume, 1)
nvi = signed_volume[signed_volume < 0].abs() * roc_
nvi.fillna(0, inplace=True)
nvi.iloc[0] = initial
nvi = nvi.cumsum()
# Offset
if offset != 0:
nvi = nvi.shift(offset)
# Handle fills
if "fillna" in kwargs:
nvi.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
nvi.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
nvi.name = f"NVI_{length}"
nvi.category = "volume"
return nvi
nvi.__doc__ = \
"""Negative Volume Index (NVI)
The Negative Volume Index is a cumulative indicator that uses volume change in
an attempt to identify where smart money is active.
Sources:
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde
https://www.motivewave.com/studies/negative_volume_index.htm
Calculation:
Default Inputs:
length=1, initial=1000
ROC = Rate of Change
roc = ROC(close, length)
signed_volume = signed_series(volume, initial=1)
nvi = signed_volume[signed_volume < 0].abs() * roc_
nvi.fillna(0, inplace=True)
nvi.iloc[0]= initial
nvi = nvi.cumsum()
Args:
close (pd.Series): Series of 'close's
volume (pd.Series): Series of 'volume's
length (int): The short period. Default: 13
initial (int): The short period. Default: 1000
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""