# -*- coding: utf-8 -*-
from numpy import array_split
from numpy import mean
from pandas import cut, concat, DataFrame
from pandas_ta.utils import signed_series, verify_series
[docs]def vp(close, volume, width=None, **kwargs):
    """Indicator: Volume Profile (VP)"""
    # Validate arguments
    width = int(width) if width and width > 0 else 10
    close = verify_series(close, width)
    volume = verify_series(volume, width)
    sort_close = kwargs.pop("sort_close", False)
    if close is None or volume is None: return
    # Setup
    signed_price = signed_series(close, 1)
    pos_volume = volume * signed_price[signed_price > 0]
    pos_volume.name = volume.name
    neg_volume = -volume * signed_price[signed_price < 0]
    neg_volume.name = volume.name
    vp = concat([close, pos_volume, neg_volume], axis=1)
    close_col = f"{vp.columns[0]}"
    high_price_col = f"high_{close_col}"
    low_price_col = f"low_{close_col}"
    mean_price_col = f"mean_{close_col}"
    volume_col = f"{vp.columns[1]}"
    pos_volume_col = f"pos_{volume_col}"
    neg_volume_col = f"neg_{volume_col}"
    total_volume_col = f"total_{volume_col}"
    vp.columns = [close_col, pos_volume_col, neg_volume_col]
    # sort_close: Sort by close before splitting into ranges. Default: False
    # If False, it sorts by date index or chronological versus by price
    if sort_close:
        vp[mean_price_col] = vp[close_col]
        vpdf = vp.groupby(cut(vp[close_col], width, include_lowest=True, precision=2)).agg({
            mean_price_col: mean,
            pos_volume_col: sum,
            neg_volume_col: sum,
        })
        vpdf[low_price_col] = [x.left for x in vpdf.index]
        vpdf[high_price_col] = [x.right for x in vpdf.index]
        vpdf = vpdf.reset_index(drop=True)
        vpdf = vpdf[[low_price_col, mean_price_col, high_price_col, pos_volume_col, neg_volume_col]]
    else:
        vp_ranges = array_split(vp, width)
        result = ({
            low_price_col: r[close_col].min(),
            mean_price_col: r[close_col].mean(),
            high_price_col: r[close_col].max(),
            pos_volume_col: r[pos_volume_col].sum(),
            neg_volume_col: r[neg_volume_col].sum(),
        } for r in vp_ranges)
        vpdf = DataFrame(result)
    vpdf[total_volume_col] = vpdf[pos_volume_col] + vpdf[neg_volume_col]
    # Handle fills
    if "fillna" in kwargs:
        vpdf.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        vpdf.fillna(method=kwargs["fill_method"], inplace=True)
    # Name and Categorize it
    vpdf.name = f"VP_{width}"
    vpdf.category = "volume"
    return vpdf 
vp.__doc__ = \
"""Volume Profile (VP)
Calculates the Volume Profile by slicing price into ranges.
Note: Value Area is not calculated.
Sources:
    https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:volume_by_price
    https://www.tradingview.com/wiki/Volume_Profile
    http://www.ranchodinero.com/volume-tpo-essentials/
    https://www.tradingtechnologies.com/blog/2013/05/15/volume-at-price/
Calculation:
    Default Inputs:
        width=10
    vp = pd.concat([close, pos_volume, neg_volume], axis=1)
    if sort_close:
        vp_ranges = cut(vp[close_col], width)
        result = ({range_left, mean_close, range_right, pos_volume, neg_volume} foreach range in vp_ranges
    else:
        vp_ranges = np.array_split(vp, width)
        result = ({low_close, mean_close, high_close, pos_volume, neg_volume} foreach range in vp_ranges
    vpdf = pd.DataFrame(result)
    vpdf['total_volume'] = vpdf['pos_volume'] + vpdf['neg_volume']
Args:
    close (pd.Series): Series of 'close's
    volume (pd.Series): Series of 'volume's
    width (int): How many ranges to distrubute price into. Default: 10
Kwargs:
    fillna (value, optional): pd.DataFrame.fillna(value)
    fill_method (value, optional): Type of fill method
    sort_close (value, optional): Whether to sort by close before splitting
        into ranges. Default: False
Returns:
    pd.DataFrame: New feature generated.
"""