"""Calculate portfolio benchmark tables for multiple assets side-by-side.
"""
import warnings
import numpy as np
import pandas as pd
from tradeexecutor.analysis.advanced_metrics import AdvancedMetricsMode, calculate_advanced_metrics
from tradeexecutor.state.state import State
from tradeexecutor.state.types import USDollarAmount
from tradeexecutor.analysis.curve import DEFAULT_BENCHMARK_COLOURS, CurveType
from tradeexecutor.visual.equity_curve import calculate_equity_curve, calculate_returns, resample_returns
from tradeexecutor.state.identifier import TradingPairIdentifier
from tradeexecutor.strategy.trading_strategy_universe import TradingStrategyUniverse, translate_trading_pair
from tradingstrategy.timebucket import TimeBucket
from tradingstrategy.types import TokenSymbol
#: What is the priority of buy-and-hold assets to shown in the benchmarks
DEFAULT_BENCHMARK_ASSETS = (
"BTC",
"WBTC",
"ETH",
"WETH",
"WMATIC",
"MATIC",
"ARB",
"WARB",
"SOL",
"WSOL",
)
def _find_benchmark_pair(strategy_universe: TradingStrategyUniverse, token_symbol: TokenSymbol) -> TradingPairIdentifier | None:
"""Try to find the price series for our comparison asset in the trading universe."""
for dex_pair in strategy_universe.data_universe.pairs.iterate_pairs():
pair = translate_trading_pair(dex_pair)
if pair.base.token_symbol == token_symbol:
return pair
return None
[docs]def get_benchmark_data(
strategy_universe: TradingStrategyUniverse,
max_count=2,
interesting_assets=DEFAULT_BENCHMARK_ASSETS,
cumulative_with_initial_cash: USDollarAmount =0.0,
asset_colours=DEFAULT_BENCHMARK_COLOURS,
start_at: pd.Timestamp | None = None,
include_price_series=False,
) -> pd.DataFrame | tuple[pd.DataFrame, pd.DataFrame]:
"""Get returns series of different benchmark index assets from the universe.
- Assets are: BTC, ETH, MATIC
To be used with :py:func:`compare_multiple_portfolios` and :py:func:`tradeexecutor.visual.benchmark.visualise_equity_curve_benchmark`.
Example:
.. code-block:: python
from tradeexecutor.analysis.multi_asset_benchmark import get_benchmark_data
from tradeexecutor.visual.benchmark import visualise_equity_curve_benchmark
benchmark_indexes = get_benchmark_data(
strategy_universe,
cumulative_with_initial_cash=state.portfolio.get_initial_cash()
)
fig = visualise_equity_curve_benchmark(
name=state.name,
portfolio_statistics=state.stats.portfolio,
all_cash=state.portfolio.get_initial_cash(),
benchmark_indexes=benchmark_indexes,
height=800,
log_y=False,
)
fig.show()
:param max_count:
Return this many benchmark series
:param interesting_assets:
Choose to benchmark from these.
We also check for wrapped token symbol varients.
:param cumulative_with_initial_cash:
Get cumulative returns instead of daily returns.
Set to the cumulative initial cash value.
:param include_price_series:
Include price series for the comparison.
Changes return type.
:return:
DataFrame with returns series for each asset.
Each series has colour and name metadata added to the `series.attr`.
"""
benchmark_assets = {}
# Get the trading pair ids for the assets we want to compare
for asset in interesting_assets:
pair = _find_benchmark_pair(strategy_universe, asset)
if not pair:
continue
# Handle WETH -> ETH
unwrapped_name = asset[1:] if asset.startswith("W") else asset
benchmark_assets[unwrapped_name] = pair
if len(benchmark_assets) >= max_count:
break
df = pd.DataFrame()
# Check that we have a good source for daily returns
# If we have only weekly candles we cannot really calculate daily returns
# and will get funny results. In this case, check the availability
# of resampling price series from stop loss backtesting data.
candle_source = None
candle_source_freq = None
if strategy_universe.data_universe.time_bucket > TimeBucket.d1:
# Check if we can use stop loss data
if strategy_universe.backtest_stop_loss_time_bucket:
if strategy_universe.backtest_stop_loss_time_bucket <= TimeBucket.d1:
candle_source = strategy_universe.backtest_stop_loss_candles
candle_source_freq = strategy_universe.backtest_stop_loss_time_bucket
else:
candle_source = strategy_universe.data_universe.candles
candle_source_freq = strategy_universe.data_universe.time_bucket
assert candle_source, f"Could not find daily or shorter candles to calculate daily returns for benchmark data indexes.\n" \
f"Candle time bucket: {strategy_universe.data_universe.time_bucket}\n" \
f"Stop-loss candle time bucket: {strategy_universe.backtest_stop_loss_time_bucket}\n"
price_data = pd.DataFrame()
for name, pair in benchmark_assets.items():
price_series = candle_source.get_candles_by_pair(pair.internal_id)["close"]
if start_at:
price_series = price_series.loc[start_at:]
price_data[name] = price_series
assert len(price_series.dropna()) != 0, f"Failed to read benchmark price series for {name}: {pair}"
if isinstance(price_series.index, pd.MultiIndex):
index_fixed_series = pd.Series(data=price_series.values, index=price_series.index.get_level_values(1))
else:
index_fixed_series = price_series
if candle_source_freq == TimeBucket.d1:
daily_returns = index_fixed_series.pct_change()
else:
if candle_source_freq < TimeBucket.d1:
daily_returns = index_fixed_series.resample("D").ffill().pct_change()
# daily_returns = resample_returns(index_fixed_series.pct_change(), freq="D")
else:
raise NotImplementedError("Cannot correctly fill in the data")
if cumulative_with_initial_cash:
cumulative_returns = (1 + daily_returns).cumprod()
equity_curve = cumulative_returns * cumulative_with_initial_cash
# Merge df and equity_curve_df with an outer join
# since indexes can differ
equity_curve_df = equity_curve.to_frame(name=name)
df = df.merge(equity_curve_df, left_index=True, right_index=True, how='outer')
df[name] = equity_curve
else:
df[name] = daily_returns
# reassign attrs after merge since they are lost
for column in df.columns:
name = df[column].name
if cumulative_with_initial_cash:
df[name].attrs["name"] = name
df[name].attrs["colour"] = asset_colours.get(name)
df[name].attrs["returns_series_type"] = "cumulative_returns"
df[name].attrs["curve"] = CurveType.equity
else:
df[name].attrs["returns_series_type"] = "daily_returns"
df[name].attrs["period"] = "D"
df[name].attrs["curve"] = CurveType.returns
if include_price_series:
return df, price_data
return df
[docs]def compare_multiple_portfolios(
portfolios: pd.DataFrame,
indexes: pd.DataFrame | None = None,
mode: AdvancedMetricsMode=AdvancedMetricsMode.full,
periods_per_year=365,
display=False,
) -> pd.DataFrame:
"""Compare multiple portfolios.
- Assets against each other: BTC vs. ETH
- Strategy against index: Strategy vs. BTC
- Multiple assets in the same table: Strategt vs. BTC vs. ETH
:param portfolios:
A DataFrame of different daily series of actively trading portfolios.
See :py:func:`tradeexecutor.visual.equity_curve.calculate_returns`.
Each portfolio must have the returns series for the same time period,
time periods are not matched.
:param indexes:
A DataFrame of different daily returns passive buy and hold indexes.
:return:
QuantStats comparison of all different returns.
"""
result_table = pd.DataFrame()
assert len(portfolios.columns) + len(indexes.columns) >= 1, f"Need at least one portfolios to benchmark: {portfolios.columns}, {indexes.columns}"
for name, portfolio_series in portfolios.items():
metrics = calculate_advanced_metrics(
portfolio_series,
mode=mode,
periods_per_year=periods_per_year,
convert_to_daily=False,
display=display,
)
assert "Strategy" in metrics.columns, f"We got {metrics.columns}"
result_table[name] = metrics["Strategy"]
last_series = portfolio_series
# Add benchmark indexes to the result table
for name, index_series in indexes.items():
metrics = calculate_advanced_metrics(
last_series,
benchmark=index_series,
mode=mode,
periods_per_year=periods_per_year,
convert_to_daily=False,
display=display,
)
result_table[name] = metrics["Benchmark"]
return result_table
[docs]def compare_strategy_backtest_to_multiple_assets(
state: State | None,
strategy_universe: TradingStrategyUniverse,
returns: pd.Series | None = None,
display=False,
asset_count=3,
verbose=True,
interesting_assets=DEFAULT_BENCHMARK_ASSETS,
) -> pd.DataFrame:
"""Backtest comparison of strategy against buy and hold assets.
- Benchmark start is set to the timestamp when the strategy marked itself being ready,
see :py:meth:`State.mark_ready`.
:param state:
Needed to extract the trust decidable backtesting range
:return:
DataFrame with QuantStats results.
One column for strategy and for each benchmark asset we have loaded in the strategy universe.
"""
if verbose:
if strategy_universe.data_universe.time_bucket >= TimeBucket.d7:
print("Some of the performance metrics might be incorrect for the strategy, because the trading time frame is longer than 1 day")
# Get daily returns
if returns is None:
assert state, "State must be given if no returns are given"
equity = calculate_equity_curve(state)
returns = calculate_returns(equity)
daily_returns = resample_returns(returns, "D")
if state is not None:
start_at, end_at = state.get_trading_time_range()
else:
start_at = end_at = None
benchmarks, price_data = get_benchmark_data(
strategy_universe,
max_count=asset_count,
include_price_series=True,
start_at=start_at,
interesting_assets=interesting_assets,
)
portfolios = pd.DataFrame(
{"Strategy": daily_returns}
)
table = compare_multiple_portfolios(
portfolios=portfolios,
indexes=benchmarks,
display=display,
)
# Add start and end prices
start_price = {"Strategy": pd.NA}
end_price = {"Strategy": pd.NA}
diff = {"Strategy": pd.NA}
multiplier = {"Strategy": pd.NA}
first_price_at = {"Strategy": pd.Timestamp(state.get_trading_time_range()[0]) if state else pd.NA}
price_freq = {"Strategy": pd.NA}
for asset_name, price_series in price_data.items():
start_price[asset_name] = price_series.iloc[0]
end_price[asset_name] = price_series.iloc[-1]
diff[asset_name] = (end_price[asset_name] - start_price[asset_name]) / start_price[asset_name]
multiplier[asset_name] = (end_price[asset_name] - start_price[asset_name]) / start_price[asset_name] + 1
first_price_at[asset_name] = price_series.index[0]
price_freq[asset_name] = price_series.index[1] - price_series.index[0]
index = ["Benchmark start", "Start price", "End price", "Price diff", "Multiplier X", "Candle freq"]
with warnings.catch_warnings():
# Inferring datetime64[ns] from data containing strings is deprecated and will be removed in a future version. To retain the old behavior explicitly pass Series(data, dtype=datetime64[ns])
warnings.simplefilter(action='ignore', category=FutureWarning)
prices_table = pd.DataFrame(
[first_price_at, start_price, end_price, diff, multiplier, price_freq],
index=index
)
prices_table = prices_table.applymap(lambda x: f"{x:.2f}" if isinstance(x, (float, np.float64)) else x)
prices_table = prices_table.fillna("-")
table = pd.concat([table, prices_table])
return table