Source code for tradeexecutor.analysis.multipair

"""Multipair strategy analyses.

Designed for strategies trading > 5 assets.
"""
import numpy as np
import pandas as pd
from IPython.display import HTML

from tradeexecutor.state.identifier import TradingPairIdentifier
from tradeexecutor.state.portfolio import Portfolio
from tradeexecutor.state.state import State
from tradingstrategy.utils.format import format_percent_2_decimals
from tradingstrategy.utils.jupyter import make_clickable


def _format_value(v: float) -> str:
    """Format US dollar value, no dollar sign."""
    return f"{v:,.2f}"


[docs]def analyse_pair_trades(pair: TradingPairIdentifier, portfolio: Portfolio) -> dict: """Write a single analysis row for a specific pair. :return: Dict with raw value """ positions = [p for p in portfolio.get_all_positions() if p.pair == pair] trades = [t for t in portfolio.get_all_trades() if t.pair == pair] profits = [p.get_total_profit_percent() for p in positions] best = max(profits) worst = min(profits) mean = float(np.mean(profits)) median = float(np.median(profits)) volume = sum([t.get_value() for t in trades]) total_usd_profit = sum([p.get_total_profit_usd() for p in positions]) wins = sum([1 for p in positions if p.get_total_profit_usd() >= 0]) losses = sum([1 for p in positions if p.get_total_profit_usd() < 0]) take_profits = sum([1 for p in positions if p.is_take_profit()]) stop_losses = sum([1 for p in positions if p.is_stop_loss()]) trailing_stop_losses = sum([1 for p in positions if p.is_trailing_stop_loss()]) total_return = sum(profits) volatility = np.std(profits) return { "Trading pair": pair.get_human_description(describe_type=True), "Positions": len(positions), "Trades": len(trades), "Total return %": total_return, "Total PnL USD": total_usd_profit, "Best": best, "Worst": worst, "Avg": mean, "Median": median, "Volume": volume, "Wins": wins, "Losses": losses, "Take profits": take_profits, "Stop losses": stop_losses, "Trailing stop losses": trailing_stop_losses, "Volatility": volatility, }
[docs]def analyse_multipair(state: State) -> pd.DataFrame: """Build an analysis table. Create a table where 1 row = 1 trading pair. :param state: :return: Datframe of the results. Sorted by the best return. """ pairs = state.portfolio.get_all_traded_pairs() rows = [analyse_pair_trades(p, state.portfolio) for p in pairs] df = pd.DataFrame(rows) return df
[docs]def format_multipair_summary( df: pd.DataFrame, sort_column="Total return %", ascending=False, format_columns=True ) -> pd.DataFrame: """Format the multipair summary table. Convert raw numbers to preferred human format. :param df: Input table. See :py:func:`analyse_pair_trades`. :param format_columns: If True, format columns with clickable links. Provided as option since some users may want to export the tables without html markup. :return: Dataframe with formatted values for each trading pair. If there are no trades return empty dataframe. """ if len(df) == 0: return pd.DataFrame() df = df.sort_values(by=[sort_column], ascending=ascending) formatters = { "Trading pair": str, "Positions": str, "Trades": str, "Total return %": format_percent_2_decimals, "Total PnL USD": _format_value, "Best": format_percent_2_decimals, "Worst": format_percent_2_decimals, "Avg": format_percent_2_decimals, "Median": format_percent_2_decimals, "Volume": _format_value, "Wins": str, "Losses": str, "Take profits": str, "Stop losses": str, "Trailing stop losses": str, "Volatility": format_percent_2_decimals, } for col, format_func in formatters.items(): df[col] = df[col].apply(format_func) if format_columns: headings = [ ("Trading pair", "https://tradingstrategy.ai/glossary/trading-pair"), ("Positions", "https://tradingstrategy.ai/glossary/position"), ("Trades", "https://tradingstrategy.ai/glossary/swap"), ("Total return %", "https://tradingstrategy.ai/glossary/aggregate-return"), ("Total PnL USD", None), ("Best", None), ("Worst", None), ("Avg", None), ("Median", None), ("Volume", None), ("Wins", None), ("Losses", None), ("Take profits", "https://tradingstrategy.ai/glossary/take-profit"), ("Stop losses", "https://tradingstrategy.ai/glossary/stop-loss"), ("Trailing stop losses", "https://tradingstrategy.ai/glossary/trailing-stop-loss"), ("Volatility", None), ] df.columns = [make_clickable(h, url) if url else h for h, url in headings] return HTML(df.to_html(escape=False)) return df