Source code for tradeexecutor.backtest.optimiser_functions

"""Functions the optimiser would be looking for.

- You can also write your own optimiser functions, see :py:class:`tradeexecutor.backtest.optimiser.SearchFunction`.

Example:

.. code-block:: python

    import logging
    from tradeexecutor.backtest.optimiser import perform_optimisation
    from tradeexecutor.backtest.optimiser import prepare_optimiser_parameters
    from tradeexecutor.backtest.optimiser_functions import optimise_profit, optimise_sharpe
    from tradeexecutor.backtest.optimiser import MinTradeCountFilter

    # How many Gaussian Process iterations we do
    iterations = 6

    optimised_results = perform_optimisation(
        iterations=iterations,
        search_func=optimise_profit,
        decide_trades=decide_trades,
        strategy_universe=strategy_universe,
        parameters=prepare_optimiser_parameters(Parameters),  # Handle scikit-optimise search space
        create_indicators=create_indicators,
        result_filter=MinTradeCountFilter(50)
        # Uncomment for diagnostics
        # log_level=logging.INFO,
        # max_workers=1,
    )

    print(f"Optimise completed, optimiser searched {optimised_results.get_combination_count()} combinations")
"""

import numpy as np

from .optimiser import GridSearchResult, OptimiserSearchResult
from ..state.types import Percent
from ..visual.equity_curve import calculate_rolling_sharpe


[docs]def optimise_profit(result: GridSearchResult) -> OptimiserSearchResult: """Search for the best CAGR value.""" return OptimiserSearchResult(-result.get_cagr(), negative=True)
[docs]def optimise_sharpe(result: GridSearchResult) -> OptimiserSearchResult: """Search for the best Sharpe value.""" return OptimiserSearchResult(-result.get_sharpe(), negative=True)
[docs]def optimise_win_rate(result: GridSearchResult) -> OptimiserSearchResult: """Search for the best trade win rate.""" return OptimiserSearchResult(-result.get_win_rate(), negative=True)
[docs]def optimise_max_drawdown(result: GridSearchResult) -> OptimiserSearchResult: """Search for the lowest max drawdown. - Return absolute value of drawdown (negative sign removed). - Lower is better. """ return OptimiserSearchResult(abs(result.get_max_drawdown()), negative=False)
[docs]def optimise_sharpe_and_max_drawdown_ratio(result: GridSearchResult) -> OptimiserSearchResult: """Search for the best sharpe / max drawndown ratio. - One of the attempts to try to find "balanced" strategies that do not take risky trades, but rather sit on the cash (which can be used elsewhere) - Search combined sharpe / max drawdown ratio. - Higher is better. - See also :py:func:`BalancedSharpeAndMaxDrawdownOptimisationFunction` """ return OptimiserSearchResult(-(result.get_sharpe() / abs(result.get_max_drawdown())), negative=True)
[docs]class BalancedSharpeAndMaxDrawdownOptimisationFunction: """Try to find a strategy with balanced Sharpe and max drawdown. - Both max drawdown and sharpe are giving weights (by default 50%) - Try to find a result where both of these varibles are maxed out - You can weight one more than other - See also :py:func:`optimise_sharpe_and_max_drawdown_ratio` Example: .. code-block:: python import logging from tradeexecutor.backtest.optimiser import perform_optimisation from tradeexecutor.backtest.optimiser import prepare_optimiser_parameters from tradeexecutor.backtest.optimiser_functions import optimise_profit, optimise_sharpe, BalancedSharpeAndMaxDrawdownOptimisationFunction from tradeexecutor.backtest.optimiser import MinTradeCountFilter # How many Gaussian Process iterations we do iterations = 8 optimised_results = perform_optimisation( iterations=iterations, search_func=BalancedSharpeAndMaxDrawdownOptimisationFunction(sharpe_weight=0.75, max_drawdown_weight=0.25), decide_trades=decide_trades, strategy_universe=strategy_universe, parameters=prepare_optimiser_parameters(Parameters), # Handle scikit-optimise search space create_indicators=create_indicators, result_filter=MinTradeCountFilter(150), timeout=20*60, # Uncomment for diagnostics # log_level=logging.INFO, # max_workers=1, ) print(f"Optimise completed, optimiser searched {optimised_results.get_combination_count()} combinations") """
[docs] def __init__( self, sharpe_weight: Percent =0.5, max_drawdown_weight: Percent =0.5, max_sharpe: float =3.0, epsilon=0.01, ): self.sharpe_weight = sharpe_weight self.max_drawdown_weight = max_drawdown_weight self.max_sharpe = max_sharpe self.epsilon = epsilon assert self.sharpe_weight + self.max_drawdown_weight == 1
[docs] def __call__(self, result: GridSearchResult) -> OptimiserSearchResult: normalised_max_drawdown = 1 + result.get_max_drawdown() # 0 drawdown get value of max 1 normalised_sharpe = min(result.get_sharpe(), self.max_sharpe) / self.max_sharpe # clamp sharpe to 3 total_normalised = normalised_max_drawdown * self.max_drawdown_weight + normalised_sharpe * self.sharpe_weight error_message = f"Got {total_normalised} with normalised sharpe: {normalised_sharpe} and normalised max drawdown {normalised_max_drawdown}\nWeights sharpe: {self.sharpe_weight} / dd: {self.max_drawdown_weight}.\nRaw sharpe: {result.get_sharpe()}, raw max downdown: {result.get_max_drawdown()}" # Total normalised is allowed to go below zero if Sharpe is negative (loss making strategy) # assert total_normalised > 0, error_message assert total_normalised < 1 + self.epsilon, error_message return OptimiserSearchResult(-total_normalised, negative=True)
[docs]class RollingSharpeOptimisationFunction: """Find a rolling sharpe that's stable and high. - Rolling sharpe is not volatile but a constant line - This means the strategy produces constant results over the time - Higher rolling sharpe is better """
[docs] def __init__(self, rolling_sharpe_window_days=180): self.rolling_sharpe_window_days = rolling_sharpe_window_days
[docs] def __call__(self, result: GridSearchResult) -> OptimiserSearchResult: rolling_sharpe = calculate_rolling_sharpe( result.returns, freq="D", periods=self.rolling_sharpe_window_days, ) # The ratio of mean divided by standard deviation is known by different names depending on the context, but it's most commonly referred to as the following: # # Coefficient of Variation (CV): This term is used when both the mean and standard deviation are positive. It's often expressed as a percentage. # Signal-to-Noise Ratio (SNR): This term is used in signal processing and statistics. # # In some contexts, particularly in finance, the inverse (standard deviation divided by mean) is called the Coefficient of Variation. # Interpretation of high and low values: # High values (mean >> standard deviation): # # Indicate that the mean is large relative to the variability in the data. # Suggest more consistent or stable data. # In finance, could indicate better risk-adjusted returns. # In signal processing, suggest a clearer signal relative to noise. # # Low values (mean << standard deviation): # # Indicate high variability relative to the mean. # Suggest more dispersed or volatile data. # In finance, could indicate worse risk-adjusted returns. # In signal processing, suggest a weaker signal relative to noise. # # It's important to note that the interpretation can vary depending on the specific field and context. For example: # # In manufacturing quality control, a lower CV typically indicates better process control. # In investment, a higher Sharpe ratio (which is based on this concept) indicates better risk-adjusted returns. # In experimental sciences, a lower CV might indicate more precise measurements. value = np.mean(rolling_sharpe) / np.std(rolling_sharpe) return OptimiserSearchResult(-value, negative=True)