"""Positions open and closing management."""
import datetime
from decimal import Decimal
from typing import List, Optional, Union
import logging
import pandas as pd
from tradeexecutor.state.identifier import AssetIdentifier, TradingPairIdentifier
from tradeexecutor.state.portfolio import Portfolio
from tradeexecutor.state.position import TradingPosition, TriggerPriceUpdate
from tradeexecutor.state.state import State
from tradeexecutor.state.trade import TradeType, TradeExecution
from tradeexecutor.state.types import USDollarAmount, Percent, USDollarPrice
from tradeexecutor.strategy.pricing_model import PricingModel
from tradingstrategy.candle import CandleSampleUnavailable
from tradingstrategy.pair import DEXPair
from tradingstrategy.universe import Universe
from tradeexecutor.strategy.trading_strategy_universe import translate_trading_pair, TradingStrategyUniverse
logger = logging.getLogger(__name__)
class NoSingleOpenPositionException(Exception):
"""Raised if getting the single position of the current portfolio is not successful."""
[docs]class PositionManager:
"""An utility class to open and close new trade positions.
`PositionManager` hides away the complex logic reason about trades.
It is designed to be used in a trading strategy's `decide_trades()` function
as an utility class to generate trades a list of :py:class:`TradeExecution`
objects.
It offers a simple interface for trading for people who are used to
TradingView's :term:`Pine Script` or similar limited trade scripting environment.
PositionManager helps about
- How to have up-to-date price information
- Setting take profit/stop loss parameters for positions
- Converting between US dollar prices, crypto prices
- Converting between quantity and value of a trade
- Caring whether we have an existing position open for the trading pair already
- Shortcut methods for trading strategies that trade only a single trading pair
`PositionManager` takes the price feed and current execution state as an input and
produces the execution instructions to change positions.
Below are some recipes how to use position manager.
Position manager is usually instiated at your `decide_trades` function as the following:
.. code-block:: python
from typing import List, Dict
from tradeexecutor.state.visualisation import PlotKind
from tradeexecutor.state.trade import TradeExecution
from tradeexecutor.strategy.pricing_model import PricingModel
from tradeexecutor.strategy.pandas_trader.position_manager import PositionManager
from tradeexecutor.state.state import State
from tradingstrategy.universe import Universe
def decide_trades(
timestamp: pd.Timestamp,
universe: Universe,
state: State,
pricing_model: PricingModel,
cycle_debug_data: Dict) -> List[TradeExecution]:
# Create a position manager helper class that allows us easily to create
# opening/closing trades for different positions
position_manager = PositionManager(timestamp, universe, state, pricing_model)
How to check if you have an open position using :py:meth:`is_any_open`
and then open a new position:
.. code-block:: python
# List of any trades we decide on this cycle.
# Because the strategy is simple, there can be
# only zero (do nothing) or 1 (open or close) trades
# decides
trades = []
if not position_manager.is_any_open():
buy_amount = cash * position_size
trades += position_manager.open_1x_long(pair, buy_amount)
return trades
How to check the entry price and open quantity of your latest position.
See also :py:class:`decimal.Decimal` about arbitrary precision decimal numbers
in Python.
.. code-block:: python
# Will throw an exception if there is no position open
current_position = position_manager.get_current_position()
# Quantity is the open amount in tokens.
# This is expressed in Python Decimal class,
# because Ethereum token balances are accurate up to 18 decimals
# and this kind of accuracy cannot be expressed in floating point numbers.
quantity = current_position.get_quantity()
assert quantity == Decimal('0.03045760003971992547285959728')
# The current price is the price of the trading pair
# that was recorded on the last price feed sync.
# This is a 64-bit floating point, as the current price
# is always approximation based on market conditions.
price = current_position.get_current_price()
assert price == 1641.6263899583264
# The opening price is the price of the first trade
# that was made for this position. This is the actual
# executed price of the trade, expressed as floating
# point for the convenience.
price = current_position.get_opening_price()
assert price == 1641.6263899583264
"""
[docs] def __init__(self,
timestamp: Union[datetime.datetime, pd.Timestamp],
universe: Universe | TradingStrategyUniverse,
state: State,
pricing_model: PricingModel,
default_slippage_tolerance=0.05, # Slippage tole
):
"""Create a new PositionManager instance.
Call within `decide_trades` function.
:param timestamp:
The timestamp of the current strategy cycle
:param universe:
Trading universe of available assets
:param state:
Current state of the trade execution
:param pricing_model:
The model to estimate prices for any trades
:param default_slippage_tolerance:
Slippage tolerance parameter set for any trades if not overriden trade-by-trade basis.
Default to 5% slippage.
TODO: Tighten this parameter when execution tracking works better.
"""
assert pricing_model, "pricing_model is needed in order to know buy/sell price of new positions"
if isinstance(timestamp, pd.Timestamp):
timestamp = timestamp.to_pydatetime().replace(tzinfo=None)
self.timestamp = timestamp
if isinstance(universe, Universe):
# Legacy
# Engine version 0.1 and 0.2
self.data_universe = universe
self.strategy_universe = None
elif isinstance(universe, TradingStrategyUniverse):
# Engine version 0.3
# See tradeexecutor.strategy.engine_version
self.strategy_universe = universe
self.data_universe = universe.universe
else:
raise RuntimeError(f"Does not know the universe: {universe}")
self.state = state
self.pricing_model = pricing_model
self.default_slippage_tolerance = default_slippage_tolerance
reserve_currency, reserve_price = state.portfolio.get_default_reserve_asset()
self.reserve_currency = reserve_currency
[docs] def is_any_open(self) -> bool:
"""Do we have any positions open."""
return len(self.state.portfolio.open_positions) > 0
[docs] def get_current_position(self) -> TradingPosition:
"""Get the current single position.
This is a shortcut function for trading strategies
that operate only a single trading pair and a single position.
:return:
Currently open trading position
:raise NoSingleOpenPositionError:
If you do not have a position open or there are multiple positions open.
"""
open_positions = self.state.portfolio.open_positions
if len(open_positions) == 0:
raise NoSingleOpenPositionException(f"No positions open at {self.timestamp}")
if len(open_positions) > 1:
raise NoSingleOpenPositionException(f"Multiple positions ({len(open_positions)}) open at {self.timestamp}")
return next(iter(open_positions.values()))
[docs] def get_current_position_for_pair(self, pair: TradingPairIdentifier) -> Optional[TradingPosition]:
"""Get the current open position for a specific trading pair.
:return:
Currently open trading position.
If there is no open position return None.
"""
return self.state.portfolio.get_position_by_trading_pair(pair)
[docs] def get_last_closed_position(self) -> Optional[TradingPosition]:
"""Get the position that was last closed.
If multiple positions are closed at the same time,
return a random position.
Example:
.. code-block:: python
last_position = position_manager.get_last_closed_position()
if last_position:
ago = timestamp - last_position.closed_at
print(f"Last position was closed {ago}")
else:
print("Strategy has not decided any position before")
:return:
None if the strategy has not closed any positions
"""
closed_positions = self.state.portfolio.closed_positions
if len(closed_positions) == 0:
return None
return max(closed_positions.values(), key=lambda c: c.closed_at)
[docs] def get_current_portfolio(self) -> Portfolio:
"""Return the active portfolio of the strategy."""
return self.state.portfolio
[docs] def get_trading_pair(self, pair_id: int) -> TradingPairIdentifier:
"""Get a trading pair identifier by its internal id.
Note that internal integer ids are not stable over
multiple trade cycles and might be reset.
Always use (chain id, smart contract) for persistent
pair identifier.
:return:
Trading pair information
"""
dex_pair = self.data_universe.pairs.get_pair_by_id(pair_id)
return translate_trading_pair(dex_pair)
[docs] def get_pair_fee(self,
pair: Optional[TradingPairIdentifier] = None,
) -> Optional[float]:
"""Estimate the trading/LP fees for a trading pair.
This information can come either from the exchange itself (Uni v2 compatibles),
or from the trading pair (Uni v3).
The return value is used to fill the
fee values for any newly opened trades.
:param pair:
Trading pair for which we want to have the fee.
Can be left empty if the underlying exchange is always
offering the same fee.
:return:
The estimated trading fee, expressed as %.
Returns None if the fee information is not available.
This can be different from zero fees.
"""
return self.pricing_model.get_pair_fee(self.timestamp, pair)
[docs] def open_1x_long(self,
pair: Union[DEXPair, TradingPairIdentifier],
value: USDollarAmount,
take_profit_pct: Optional[float] = None,
stop_loss_pct: Optional[float] = None,
trailing_stop_loss_pct: Optional[float] = None,
stop_loss_usd: Optional[USDollarAmount] = None,
notes: Optional[str] = None,
slippage_tolerance: Optional[float] = None,
) -> List[TradeExecution]:
"""Open a long.
- For simple buy and hold trades
- Open a spot market buy.
- Checks that there is not existing position - cannot increase position
:param pair:
Trading pair where we take the position
:param value:
How large position to open, in US dollar terms
:param take_profit_pct:
If set, set the position take profit relative
to the current market price.
1.0 is the current market price.
If asset opening price is $1000, take_profit_pct=1.05
will sell the asset when price reaches $1050.
:param stop_loss_pct:
If set, set the position to trigger stop loss relative to
the current market price.
1.0 is the current market price.
If asset opening price is $1000, stop_loss_pct=0.95
will sell the asset when price reaches 950.
:param trailing_stop_loss_pct:
If set, set the position to trigger trailing stop loss relative to
the current market price. Cannot be used with stop_loss_pct or stop_loss_usd.
:param stop_loss_usd:
If set, set the position to trigger stop loss at the given dollar price.
Cannot be used with stop_loss_pct or trailing_stop_loss_pct.
:param notes:
Human readable notes for this trade
:param slippage_tolerance:
Slippage tolerance for this trade.
Use :py:attr:`default_slippage_tolerance` if not set.
:return:
A list of new trades.
Opening a position may general several trades for complex DeFi positions,
though usually the result contains only a single trade.
"""
# Translate DEXPair object to the trading pair model
if isinstance(pair, DEXPair):
executor_pair = translate_trading_pair(pair)
else:
executor_pair = pair
assert value > 0, f"Negative value: {value} on {pair}"
# Convert amount of reserve currency to the decimal
# so we can have exact numbers from this point forward
if type(value) == float:
value = Decimal(value)
price_structure = self.pricing_model.get_buy_price(self.timestamp, executor_pair, value)
assert type(price_structure.mid_price) == float
reserve_asset, reserve_price = self.state.portfolio.get_default_reserve_asset()
slippage_tolerance = slippage_tolerance or self.default_slippage_tolerance
position, trade, created = self.state.create_trade(
self.timestamp,
pair=executor_pair,
quantity=None,
reserve=Decimal(value),
assumed_price=price_structure.price,
trade_type=TradeType.rebalance,
reserve_currency=self.reserve_currency,
reserve_currency_price=reserve_price,
lp_fees_estimated=price_structure.get_total_lp_fees(),
pair_fee=price_structure.get_fee_percentage(),
planned_mid_price=price_structure.mid_price,
price_structure=price_structure,
slippage_tolerance=slippage_tolerance,
)
assert created, f"There was conflicting open position for pair: {executor_pair}"
if take_profit_pct:
position.take_profit = price_structure.mid_price * take_profit_pct
if stop_loss_pct is not None:
assert 0 <= stop_loss_pct <= 1, f"stop_loss_pct must be 0..1, got {stop_loss_pct}"
self.update_stop_loss(position, price_structure.mid_price * stop_loss_pct)
if trailing_stop_loss_pct:
assert stop_loss_pct is None, "You cannot give both stop_loss_pct and trailing_stop_loss_pct"
assert 0 <= trailing_stop_loss_pct <= 1, f"trailing_stop_loss_pct must be 0..1, got {trailing_stop_loss_pct}"
self.update_stop_loss(position, price_structure.mid_price * trailing_stop_loss_pct)
position.trailing_stop_loss_pct = trailing_stop_loss_pct
if stop_loss_usd:
assert not stop_loss_pct, "You cannot give both stop_loss_pct and stop_loss_usd"
assert not trailing_stop_loss_pct, "You cannot give both trailing_stop_loss_pct and stop_loss_usd"
assert stop_loss_usd < price_structure.mid_price, f"stop_loss_usd must be less than mid_price got {stop_loss_usd} >= {price_structure.mid_price}"
self.update_stop_loss(position, stop_loss_usd)
if notes:
position.notes = notes
trade.notes = notes
self.state.visualisation.add_message(
self.timestamp,
f"Opened 1x long on {pair}, position value {value} USD")
return [trade]
[docs] def adjust_position(self,
pair: TradingPairIdentifier,
dollar_delta: USDollarAmount,
quantity_delta: Optional[float],
weight: float,
stop_loss: Optional[Percent] = None,
take_profit: Optional[Percent] = None,
trailing_stop_loss: Optional[Percent] = None,
slippage_tolerance: Optional[float] = None,
override_stop_loss=False,
) -> List[TradeExecution]:
"""Adjust holdings for a certain position.
Used to rebalance positions.
A new position is opened if no existing position is open.
If everything is sold, the old position is closed
If the rebalance is sell (`dollar_amount_delta` is negative),
then calculate the quantity of the asset to sell based
on the latest available market price on the position.
This method is called by :py:func:`~tradeexecutor.strategy.pandas_trades.rebalance.rebalance_portfolio`.
.. warning ::
Adjust position cannot be used to close an existing position, because
epsilons in quantity math. Use :py:meth:`close_position` for this.
:param pair:
Trading pair which position we adjust
:param dollar_delta:
How much we want to increase/decrease the position in US dollar terms.
:param quantity_delta:
How much we want to increase/decrease the position in the asset unit terms.
Used only when decreasing existing positions (selling).
:param weight:
What is the weight of the asset in the new target portfolio 0....1.
Currently only used to detect condition "sell all" instead of
trying to match quantity/price conversion.
:param stop_loss:
Set the stop loss for the position.
Use 0...1 based on the current mid price.
E.g. 0.98 = 2% stop loss under the current mid price.
Sets the initial stop loss. If you want to override
this for an existing position you need to use `override_stop_loss` parameter.
:param take_profit:
Set the take profit for the position.
Use 0...1 based on the current mid price.
E.g. 1.02 = 2% take profit over the current mid-price.
:param slippage_tolerance:
Slippage tolerance for this trade.
Use :py:attr:`default_slippage_tolerance` if not set.
:param override_stop_loss:
If not set and a position has already stop loss set, do not modify it.
:return:
List of trades to be executed to get to the desired
position level.
"""
assert dollar_delta != 0
assert weight <= 1, f"Target weight cannot be over one: {weight}"
assert weight >= 0, f"Target weight cannot be negative: {weight}"
try:
if dollar_delta > 0:
dollar_delta = Decimal(dollar_delta) if isinstance(dollar_delta, float | int) else dollar_delta
price_structure = self.pricing_model.get_buy_price(self.timestamp, pair, dollar_delta)
else:
quantity_delta = Decimal(quantity_delta) if isinstance(quantity_delta, float | int) else quantity_delta
price_structure = self.pricing_model.get_sell_price(self.timestamp, pair, abs(quantity_delta))
except CandleSampleUnavailable as e:
# Backtesting cannot fetch price for an asset,
# probably not enough data and the pair is trading early?
data_delay_tolerance = getattr(self.pricing_model, "data_delay_tolerance", None)
raise CandleSampleUnavailable(
f"Could not fetch price for {pair} at {self.timestamp}\n"
f"\n"
f"This is usually due to sparse candle data - trades have not been made or the blockchain was halted during the price look-up period.\n"
f"Because there are no trades we cannot determine what was the correct asset price using {data_delay_tolerance} data tolerance delay.\n"
f"\n"
f"You can work around this by checking that any trading pair candles are fresh enough in your decide_trades() function\n"
f"or increase the parameter in BacktestSimplePricingModel(data_delay_tolerance) or run_backtest_inline(data_delay_tolerance)\n"
) from e
price = price_structure.price
reserve_asset, reserve_price = self.state.portfolio.get_default_reserve_asset()
slippage_tolerance = slippage_tolerance or self.default_slippage_tolerance
if dollar_delta > 0:
# Buy
position, trade, created = self.state.create_trade(
self.timestamp,
pair=pair,
quantity=None,
reserve=Decimal(dollar_delta),
assumed_price=price,
trade_type=TradeType.rebalance,
reserve_currency=self.reserve_currency,
reserve_currency_price=reserve_price,
planned_mid_price=price_structure.mid_price,
lp_fees_estimated=price_structure.get_total_lp_fees(),
pair_fee=price_structure.get_fee_percentage(),
slippage_tolerance=slippage_tolerance,
)
else:
# Sell
# Convert dollar amount to quantity of the last known price
assert quantity_delta is not None
assert quantity_delta < 0, f"Received non-negative sell quantity {quantity_delta} for {pair}"
position = self.state.portfolio.get_position_by_trading_pair(pair)
assert position is not None, f"Assumed {pair} has open position because of attempt sell at {dollar_delta} USD adjust"
position, trade, created = self.state.create_trade(
self.timestamp,
pair=pair,
quantity=Decimal(quantity_delta),
reserve=None,
assumed_price=price_structure.price,
trade_type=TradeType.rebalance,
reserve_currency=self.reserve_currency,
reserve_currency_price=reserve_price,
planned_mid_price=price_structure.mid_price,
lp_fees_estimated=price_structure.get_total_lp_fees(),
slippage_tolerance=slippage_tolerance,
price_structure=price_structure,
)
assert trade.lp_fees_estimated > 0, f"LP fees estimated: {trade.lp_fees_estimated} - {trade}"
# Update stop loss for this position
if stop_loss:
assert stop_loss < 1, f"Got stop loss {stop_loss}"
if position.stop_loss:
# Update existing stop loss
if override_stop_loss:
self.update_stop_loss(position, price_structure.mid_price * stop_loss)
else:
# Do not override existing stop loss set earlier
pass
else:
# Set the initial stop loss
self.update_stop_loss(position, price_structure.mid_price * stop_loss)
if trailing_stop_loss:
assert trailing_stop_loss < 1, f"Got trailing_stop_loss {trailing_stop_loss}"
if not position.stop_loss:
self.update_stop_loss(position, price_structure.mid_price * trailing_stop_loss)
position.trailing_stop_loss_pct = trailing_stop_loss
if take_profit:
assert take_profit > 1, f"Got take profit {take_profit}"
position.take_profit = price_structure.mid_price * take_profit
return [trade]
[docs] def close_spot_position(self,
position: TradingPosition,
trade_type: TradeType=TradeType.rebalance,
notes: Optional[str] = None,
slippage_tolerance: Optional[float] = None,
) -> List[TradeExecution]:
"""Close a single spot market trading position.
See :py:meth:`close_position` for usage.
"""
assert position.is_spot_market()
quantity_left = position.get_available_trading_quantity()
pair = position.pair
quantity = quantity_left
price_structure = self.pricing_model.get_sell_price(self.timestamp, pair, quantity=quantity)
reserve_asset, reserve_price = self.state.portfolio.get_default_reserve_asset()
slippage_tolerance = slippage_tolerance or self.default_slippage_tolerance
logger.info("Preparing to close position %s, quantity %s, pricing %s, slippage tolerance %f", position, quantity, price_structure, slippage_tolerance)
position2, trade, created = self.state.create_trade(
self.timestamp,
pair,
-quantity, # Negative quantity = sell all
None,
price_structure.price,
trade_type,
reserve_asset,
reserve_price, # TODO: Harcoded stablecoin USD exchange rate
notes=notes,
pair_fee=price_structure.get_fee_percentage(),
lp_fees_estimated=price_structure.get_total_lp_fees(),
planned_mid_price=price_structure.mid_price,
position=position,
slippage_tolerance=slippage_tolerance,
price_structure=price_structure,
)
assert position == position2, f"Somehow messed up the close_position() trade.\n" \
f"Original position: {position}.\n" \
f"Trade's position: {position2}.\n" \
f"Trade: {trade}\n" \
f"Quantity left: {quantity_left}\n" \
f"Price structure: {price_structure}\n" \
f"Reserve asset: {reserve_asset}\n"
return [trade]
[docs] def close_credit_supply_position(self,
position: TradingPosition,
quantity: float | Decimal | None = None,
notes: Optional[str] = None,
trade_type: TradeType = TradeType.rebalance,
) -> List[TradeExecution]:
"""Close a credit supply position
:param position:
Position to close.
Must be a credit supply position.
:param quantity:
How much of the quantity we reduce.
If not given close the full position.
:return:
New trades to be executed
"""
assert self.strategy_universe, "Make sure trading_strategy_engine_version = 0.3. Credit supply does not work with old decide_trades()."
pair = position.pair
assert pair.base.underlying.is_stablecoin(), f"Non-stablecoin lending not yet implemented"
price = 1.0
if quantity is None:
quantity = position.get_quantity()
if type(quantity) == float:
# TODO: Snap the amount to the full position size if rounding errors
quantity = Decimal(quantity)
# TODO: Hardcoded USD exchange rate
reserve_asset = self.strategy_universe.get_reserve_asset()
_, trade, _ = self.state.supply_credit(
self.timestamp,
pair,
collateral_asset_price=price,
collateral_quantity=-quantity,
trade_type=trade_type,
reserve_currency=reserve_asset,
notes=notes,
position=position,
)
return [trade]
[docs] def close_position(self,
position: TradingPosition,
trade_type: TradeType | None = None,
notes: Optional[str] = None,
slippage_tolerance: Optional[float] = None,
) -> List[TradeExecution]:
"""Close a single position.
The position may already have piled up selling trades.
In this case calling `close_position()` again on the same position
does nothing and `None` is returned.
:param position:
Position to be closed
:param trade_type:
What's the reason to close the position
:param notes:
Human-readable notes for this trade
:param slippage_tolerance:
Slippage tolerance for this trade.
Use :py:attr:`default_slippage_tolerance` if not set.
:return:
Get list of trades needed to close this position.
return list of trades.
"""
assert position.is_long(), "Only long supported for now"
assert position.is_open(), f"Tried to close already closed position {position}"
quantity_left = position.get_available_trading_quantity()
if quantity_left == 0:
# We have already generated closing trades for this position
# earlier
logger.warning("Tried to close position that is likely already closed, as there are no tokens to sell: %s", position)
return []
if position.is_spot_market():
if trade_type is None:
trade_type = TradeType.rebalance
return self.close_spot_position(
position,
trade_type,
notes,
slippage_tolerance
)
elif position.is_credit_supply():
if trade_type is None:
trade_type = TradeType.rebalance
return self.close_credit_supply_position(
position,
trade_type=trade_type,
notes=notes,
)
else:
raise NotImplementedError(f"Does not know how to close: {position}")
[docs] def close_all(self) -> List[TradeExecution]:
"""Close all open positions.
:return:
List of trades that will close existing positions
"""
assert self.is_any_open(), "No positions to close"
position: TradingPosition
trades = []
for position in self.state.portfolio.open_positions.values():
trade = self.close_position(position)
if trade:
trades.extend(trade)
return trades
[docs] def estimate_asset_quantity(
self,
pair: TradingPairIdentifier,
dollar_amount: USDollarAmount,
) -> float:
"""Convert dollar amount to the quantity of a token.
Use the market mid-price of the timestamp.
:param pair:
Trading pair of which base pair we estimate.
:param dollar_amount:
Get the asset quantity for this many dollars.
:return:
Asset quantity.
The sign of the asset quantity is the same as the sign of `dollar_amount` parameter.
We return as float, because the exact quantity is never known due the price fluctuations and slippage.
"""
assert dollar_amount, f"Got dollar amount: {dollar_amount}"
timestamp = self.timestamp
pricing_model = self.pricing_model
price = pricing_model.get_mid_price(timestamp, pair)
return float(dollar_amount / price)
[docs] def update_stop_loss(self, position: TradingPosition, stop_loss: USDollarAmount):
"""Update the stop loss for the current position.
:param position:
Position to update. For multipair strategies, providing this parameter is strongly recommended.
:param stop_loss:
Stop loss in US dollar terms
:param mid_price:
Mid price of the pair (https://tradingstrategy.ai/glossary/mid-price). Provide when possible for most complete statistical analysis. In certain cases, it may not be easily available, so it's optional.
"""
mid_price = self.pricing_model.get_mid_price(self.timestamp, position.pair)
position.trigger_updates.append(TriggerPriceUpdate(
timestamp=self.timestamp,
stop_loss_before = position.stop_loss,
stop_loss_after = stop_loss,
mid_price = mid_price,
take_profit_before = position.take_profit,
take_profit_after = position.take_profit, # No changes to take profit
))
position.stop_loss = stop_loss
[docs] def open_credit_supply_position_for_reserves(self, amount: USDollarAmount) -> List[TradeExecution]:
"""Move reserve currency to a credit supply position.
:param amount:
Amount of cash to lend out
:return:
List of trades that will open this credit position
"""
lending_pool_identifier = self.strategy_universe.get_credit_supply_pair()
state = self.state
credit_supply_position, trade, _ = state.supply_credit(
self.timestamp,
lending_pool_identifier,
collateral_quantity=Decimal(amount),
trade_type=TradeType.rebalance,
reserve_currency=self.strategy_universe.get_reserve_asset(),
collateral_asset_price=1.0,
)
return [trade]