Source code for tradeexecutor.visual.equity_curve

"""Equity curve based statistics and visualisations.

For more information see the narrative documentation on :ref:`profitability`.
"""
import datetime
import warnings
from typing import List

import pandas as pd
import numpy as np
from matplotlib.figure import Figure

from tradeexecutor.analysis.curve import CurveType, DEFAULT_BENCHMARK_COLOURS
from tradeexecutor.state.portfolio import Portfolio
from tradeexecutor.state.state import State
from tradeexecutor.state.statistics import Statistics, PortfolioStatistics
from tradeexecutor.state.position import TradingPosition
from tradeexecutor.visual.qs_wrapper import import_quantstats_wrapped


[docs]def calculate_equity_curve( state: State, attribute_name="total_equity", fill_time_gaps=False, ) -> pd.Series: """Calculate equity curve for the portfolio. Translate the portfolio internal :py:attr:`Statistics.portfolio` to :py:class:`pd.Series` that allows easy equity curve calculations. This reads :py:class:`tradeexecutor.state.stats.PortfolioStatistics` Example: .. code-block:: python equity_curve = calculate_equity_curve(state) :param attribute_name: Calculate equity curve based on this attribute of :py:class:` :param fill_time_gaps: Insert a faux book keeping entries at start and end. If not set, only renders the chart when there was some activate deposits and ignores non-activity gaps at start and end. See :py:meth:`tradeexecutor.state.state.State.get_strategy_time_range`. :return: Pandas series (timestamp, equity value). Index is DatetimeIndex. Empty series is returned if there is no data. We ensure only one entry per timestamp through filtering out duplicate indices. """ stats: Statistics = state.stats portfolio_stats: List[PortfolioStatistics] = stats.portfolio data = [(s.calculated_at, getattr(s, attribute_name)) for s in portfolio_stats] if len(data) == 0: return pd.Series([], index=pd.to_datetime([]), dtype='float64') if fill_time_gaps: start, end = state.get_strategy_time_range() end_val = data[-1][1] if data[0][0] != start: data = [(start, 0)] + data if end != end_val: data.append((end, end_val)) # https://stackoverflow.com/a/66772284/315168 df = pd.DataFrame(data).set_index(0)[1] # Remove duplicates # # Happens in unit tests as we get a calculate event from deposit # and recalculatin at the same timestam # ipdb> curve # 0 # 2021-06-01 00:00:00.000000 0.000000 # 2023-10-18 10:04:05.834542 10000.000000 # 2021-06-01 00:00:00.000000 10000.000000 # https://stackoverflow.com/a/34297689/315168 series = df[~df.index.duplicated(keep='last')] # See curve.py series.attrs["name"] = state.name series.attrs["curve"] = CurveType.equity series.attrs["colour"] = DEFAULT_BENCHMARK_COLOURS["Strategy"] return series
[docs]def calculate_returns(equity_curve: pd.Series) -> pd.Series: """Calculate returns of an equity curve. Calculate % change for each time point we have on the equity curve. See also https://quantdare.com/calculate-monthly-returns-with-pandas/ :param equity_curve: The equity curve. Created with :py:func:`calculate_equity_curve` :return: Series of returns. This is % change over the previous entry in the time series. """ if len(equity_curve) == 0: series = pd.Series([], index=pd.to_datetime([]), dtype='float64') series = equity_curve.pct_change().fillna(0.0) series.attrs = equity_curve.attrs.copy() series.attrs["curve"] = CurveType.returns return series
[docs]def generate_buy_and_hold_returns( buy_and_hold_price_series: pd.Series, ): """Create a benchmark series based on price action. - Create a returns series that can be used as a benchmark in :py:func:`tradeexecutor.analysis.advanced_metrics.visualise_advanced_metrics` Example: .. code-block:: python eth_index = strategy_universe.data_universe.candles.get_candles_by_pair(eth_pair)["close"] benchmark_returns = generate_buy_and_hold_returns(eth_index) """ assert isinstance(buy_and_hold_price_series, pd.Series) returns = calculate_returns(buy_and_hold_price_series) returns.attrs["curve"] = CurveType.returns return returns
[docs]def calculate_cumulative_return(returns: pd.Series) -> pd.Series: """Calculate cumulative returns for the equity curve. See :term:`Cumulative return`. :param returns: The returns curve of a portfolio. See :py:func:`calculate_returns`. :return: Pandas DataFrame representing cumulative returns. """ raise NotImplementedError()
# Taken from qstrader.statistics.performance #return np.exp(np.log(1 + returns).cumsum())[-1] - 1
[docs]def calculate_aggregate_returns(equity_curve: pd.Series, freq: str | pd.DateOffset = "BM") -> pd.Series: """Calculate strategy aggregatd results over different timespans. Good to calculate - Monthly returns - Quaterly returns See :term:`Aggregate return` for more information what this metric represents. .. note :: There are multiple ways to calculate aggregated returns and they give a bit different results. See this article for details: https://quantdare.com/calculate-monthly-returns-with-pandas/ .. note :: The current simplicist method does not calculate returns for the first and last period. :param equity_curve: The equity curve of the portfolio. See :py:func:`calculate_equity_curve` :param freq: Pandas frequency string. The default value is "month-end frequency". For valid values see https://stackoverflow.com/a/35339226/315168 :return: Monthly returns for each month. The array is keyed by the end date of the period e.g. July is `2021-07-31`. The first month can be incomplete, so its value is `NaN`. """ assert isinstance(equity_curve.index, pd.DatetimeIndex), f"Got {equity_curve.index}" if len(equity_curve) == 0: return pd.Series([], index=pd.to_datetime([]), dtype='float64') equity_curve.sort_index(inplace=True) # Each equity curve sample is the last day of the period # https://stackoverflow.com/a/14039589/315168 sampled = equity_curve.asfreq(freq, method='ffill') return sampled.pct_change()
[docs]def calculate_daily_returns(state: State, freq: pd.DateOffset | str= "D") -> (pd.Series | None): """Calculate daily returns of a backtested results. Used for advanced statistics. .. warning:: Uses equity curve to calculate profits. This does not correctly handle deposit/redemptions. Use in backtesting only. :param freq: Frequency of the binned data. :returns: If valid state provided, returns are returned as calendar day (D) frequency, else None""" equity_curve = calculate_equity_curve(state) returns = calculate_aggregate_returns(equity_curve, freq=freq) return returns
[docs]def visualise_equity_curve( returns: pd.Series, title="Equity curve", line_width=1.5, ) -> Figure: """Draw equity curve, drawdown and daily returns using quantstats. `See Quantstats README for more details <https://github.com/ranaroussi/quantstats>`__. Example: .. code-block:: python from tradeexecutor.visual.equity_curve import calculate_equity_curve, calculate_returns from tradeexecutor.visual.equity_curve import visualise_equity_curve curve = calculate_equity_curve(state) returns = calculate_returns(curve) fig = visualise_equity_curve(returns) display(fig) :return: Matplotlit figure """ qs = import_quantstats_wrapped() fig = qs.plots.snapshot( returns, title=title, lw=line_width, show=False) return fig
[docs]def visualise_returns_over_time( returns: pd.Series, ) -> Figure: """Draw a grid of returns over time. - Currently only monthly breakdown supported - `See Quantstats README for more details <https://github.com/ranaroussi/quantstats>`__. Example: .. code-block:: python from tradeexecutor.visual.equity_curve import calculate_equity_curve, calculate_returns from tradeexecutor.visual.equity_curve import visualise_returns_over_time curve = calculate_equity_curve(state) returns = calculate_returns(curve) fig = visualise_equity_performance(returns) display(fig) :return: Matplotlit figure """ # /Users/moo/Library/Caches/pypoetry/virtualenvs/tradingview-defi-strategy-XB2Vkmi1-py3.10/lib/python3.10/site-packages/quantstats/stats.py:968: FutureWarning: # # In a future version of pandas all arguments of DataFrame.pivot will be keyword-only. qs = import_quantstats_wrapped() with warnings.catch_warnings(): # DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display warnings.simplefilter(action='ignore', category=FutureWarning) # /usr/local/lib/python3.10/site-packages/quantstats/stats.py:968: FutureWarning: In a future version of pandas all arguments of DataFrame.pivot will be keyword-only. # returns = returns.pivot('Year', 'Month', 'Returns').fillna(0) fig = qs.plots.monthly_returns( returns, show=False) return fig
[docs]def visualise_returns_distribution( returns: pd.Series, ) -> Figure: """Breakdown the best day/month/yearly returns - `See Quantstats README for more details <https://github.com/ranaroussi/quantstats>`__. Example: .. code-block:: python from tradeexecutor.visual.equity_curve import calculate_equity_curve, calculate_returns from tradeexecutor.visual.equity_curve import visualise_returns_distribution curve = calculate_equity_curve(state) returns = calculate_returns(curve) fig = visualise_returns_distribution(returns) display(fig) :return: Matplotlit figure """ qs = import_quantstats_wrapped() fig = qs.plots.distribution( returns, show=False) return fig
[docs]def calculate_investment_flow( state: State, ) -> pd.Series: """Calculate deposit/redemption i nflows/outflows of a strategy. See :ref:`profitability` for more information. :return: Pandas series (DatetimeIndex by the timestamp when the strategy treasury included the flow event, usd deposits/redemption amount) """ treasury = state.sync.treasury balance_updates = treasury.balance_update_refs index = [e.strategy_cycle_included_at for e in balance_updates] values = [e.usd_value for e in balance_updates] if len(index) == 0: return pd.Series([], index=pd.to_datetime([]), dtype='float64') return pd.Series(values, index)
[docs]def calculate_realised_profitability( state: State, ) -> pd.Series: """Calculate realised profitability of closed trading positions. This function returns the :term:`profitability` of individually closed trading positions. See :ref:`profitability` for more information. :return: Pandas series (DatetimeIndex, % profit). Empty series if there are no trades. """ data = [(p.closed_at, p.get_realised_profit_percent()) for p in state.portfolio.closed_positions.values()] if len(data) == 0: return pd.Series(dtype='float64') # https://stackoverflow.com/a/66772284/315168 return pd.DataFrame(data).set_index(0)[1]
[docs]def calculate_size_relative_realised_trading_returns( state: State, ) -> pd.Series: """Calculate realised profitability of closed trading positions relative to the portfolio size.. This function returns the :term:`profitability` of individually closed trading positions. See :ref:`profitability` for more information. :return: Pandas series (DatetimeIndex, % profit). Empty series if there are no trades. """ positions = [p for p in state.portfolio.closed_positions.values() if p.is_closed()] return _calculate_size_relative_trading_returns(positions)
def _calculate_size_relative_trading_returns(positions: list[TradingPosition]): # Legacy path data = [(p.closed_at, p.get_size_relative_realised_profit_percent()) for p in positions] if len(data) == 0: return pd.Series(dtype='float64', index=pd.to_datetime([])) # https://stackoverflow.com/a/66772284/315168 return pd.DataFrame(data).set_index(0)[1]
[docs]def calculate_compounding_realised_trading_profitability( state: State, fill_time_gaps=True, ) -> pd.Series: """Calculate realised profitability of closed trading positions, with the compounding effect. Assume the profits from the previous PnL are used in the next one. This function returns the :term:`profitability` of individually closed trading positions, relative to the portfolio total equity. - See :py:func:`calculate_realised_profitability` for more information - See :ref:`profitability` for more information. :param fill_time_gaps: Insert a faux book keeping entries at star tand end. There chart ends at the last profitable trade. However, we want to render the chart all the way up to the current date. If `True` then insert a booking keeping entry to the last strategy timestamp (`State.last_updated_at), working around various issues when dealing with this data at the frontend. Any fixes are not applied to empty arrays. :return: Pandas series (DatetimeIndex, cumulative % profit). Cumulative profit is 0% if there is no market action. Cumulative profit is 1 (100%) if the equity has doubled during the period. The last value of the series is the total trading profitability of the strategy over its lifetime. """ started_at, last_ts = _get_strategy_time_range(state, fill_time_gaps) positions = [p for p in state.portfolio.closed_positions.values() if p.is_closed()] return _calculate_compounding_trading_profitability(positions, fill_time_gaps, started_at, last_ts)
[docs]def calculate_compounding_unrealised_trading_profitability( state_or_portfolio: State | Portfolio, freq: str | None="D", ) -> pd.Series: """Calculate the current profitability of open and closed trading positions, with the compounding effect. :param freq: Bin results to this Pandas frequency. Default to daily. :return: Sparse Pandas series of compounded returns. Timeline of (timestamp, position profit) for each timestamp when the position was last updated or closed. """ if isinstance(state_or_portfolio, State): # State not needed, but wanted to maintain the similar signature check portfolio = state_or_portfolio.portfolio else: # Path from calculate_statistics() portfolio = state_or_portfolio # Calculate unrealised/realised profit pct for each position profit_data = [(p.get_profit_timeline_timestamp(), p.get_size_relative_unrealised_or_realised_profit_percent()) for p in portfolio.get_all_positions()] if len(profit_data) == 0: return pd.Series([], index=pd.to_datetime([]), dtype='float64') profit_data.sort(key=lambda t: t[0]) index, profit = list(zip(*profit_data)) returns = pd.Series(data=profit, index=pd.DatetimeIndex(index)) if freq: # If we haved closed two positions on the same day, asfreq() will fail unless we merge profit values def custom_cumprod_resampler(intraday_series): match len(intraday_series): case 0: return 0 case 1: return intraday_series.iloc[0] case _: # Multiple closed positions within the same day, calculate the daily overall return daily_compounded = intraday_series.add(1).cumprod().sub(1) return daily_compounded.iloc[-1] try: resampled_returns = returns.resample(freq).agg(custom_cumprod_resampler) resampled_compounded = resampled_returns.add(1).cumprod().sub(1) resampled_compounded = resampled_compounded.ffill() except Exception as e: raise RuntimeError(f"Daily binning failed for: {profit_data}") from e else: resampled_compounded = returns.add(1).cumprod().sub(1) return resampled_compounded
[docs]def extract_compounding_unrealised_trading_profitability_portfolio_statistics(state: State) -> pd.Series: """Get the statistics out from the summary profit data. :return: Pandas series with profitability % as value and DatetimeIndex as the sampled time """ data = [(stat_entry.calculated_at, stat_entry.unrealised_profitability) for stat_entry in state.stats.portfolio if stat_entry.unrealised_profitability is not None] if len(data) == 0: return pd.Series([], index=pd.to_datetime([]), dtype='float64') # https://stackoverflow.com/a/78156103/315168 df = pd.DataFrame(data, columns=["timestamp", "profitability"]) df = df.set_index("timestamp") series = df["profitability"] series = series.dropna() return series
def _calculate_compounding_trading_profitability( positions: list[TradingPosition], fill_time_gaps: bool, started_at: pd.Timestamp = None, last_ts: pd.Timestamp = None, realised_only=True, ): realised_profitability = _calculate_size_relative_trading_returns(positions) # https://stackoverflow.com/a/42672553/315168 compounded = realised_profitability.add(1).cumprod().sub(1) if fill_time_gaps and len(compounded) > 0: assert started_at assert last_ts last_value = compounded.iloc[-1] # Strategy always starts at zero compounded[started_at] = 0 # Fill from he last sample to current if last_ts and len(compounded) > 0 and last_ts > compounded.index[-1]: compounded[last_ts] = last_value # Because we insert new entries, we need to resort the array compounded = compounded.sort_index() return compounded started_at, last_ts = _get_strategy_time_range(state, fill_time_gaps) positions = state.portfolio.get_all_positions() # TODO: Frozen positions may cause issues return _calculate_compounding_trading_profitability(positions, fill_time_gaps, started_at, last_ts) def _calculate_compounding_realised_trading_profitability( positions: list[TradingPosition], fill_time_gaps: bool, started_at: pd.Timestamp = None, last_ts: pd.Timestamp = None, ): realised_profitability = _calculate_size_relative_realised_trading_returns(positions) # https://stackoverflow.com/a/42672553/315168 compounded = realised_profitability.add(1).cumprod().sub(1) if fill_time_gaps and len(compounded) > 0: assert started_at assert last_ts last_value = compounded.iloc[-1] # Strategy always starts at zero compounded[started_at] = 0 # Fill fromt he last sample to current if last_ts and len(compounded) > 0 and last_ts > compounded.index[-1]: compounded[last_ts] = last_value # Because we insert new entries, we need to resort the array compounded = compounded.sort_index() return compounded
[docs]def calculate_long_compounding_realised_trading_profitability(state, fill_time_gaps=True): started_at, last_ts = _get_strategy_time_range(state, fill_time_gaps) positions = [p for p in state.portfolio.closed_positions.values() if (p.is_closed() and p.is_long())] return _calculate_compounding_trading_profitability(positions, fill_time_gaps, started_at, last_ts)
[docs]def calculate_short_compounding_realised_trading_profitability(state, fill_time_gaps=True): started_at, last_ts = _get_strategy_time_range(state, fill_time_gaps) positions = [p for p in state.portfolio.closed_positions.values() if (p.is_closed() and p.is_short())] return _calculate_compounding_trading_profitability(positions, fill_time_gaps, started_at, last_ts)
def _get_strategy_time_range(state, fill_time_gaps): started_at, last_ts = None, None if fill_time_gaps: started_at, last_ts = state.get_strategy_time_range() if not last_ts: last_ts = datetime.datetime.utcnow() return started_at,last_ts
[docs]def calculate_deposit_adjusted_returns( state: State, freq: pd.DateOffset = pd.offsets.Day(), ) -> pd.Series: """Calculate daily/monthly/returns on capital. z See :ref:`profitability` for more information - This is `Total equity - net deposits` - This result is compounding - The result is resampled to a timeframe :param freq: Which sampling frequency we use for the resulting series. By default resample the results for daily timeframe. :return: Pandas series (DatetimeIndex by the the start timestamp fo the frequency, USD amount) """ equity = calculate_equity_curve(state) flow = calculate_investment_flow(state) # https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling equity_resampled = equity.resample(freq) equity_delta = equity_resampled.last() - equity_resampled.first() flow_delta = flow.resample(freq).sum() return equity_delta - flow_delta
[docs]def calculate_non_cumulative_daily_returns(state: State, freq_base: pd.offsets.DateOffset | None = pd.offsets.Day()) -> pd.Series: """Calculates the the non cumulative daily returns for the strategy over time. - Accounts for multiple positions in the same day - If no positions/trades are made on a day, it will be filled with 0 .. note:: Forward fill cannot be used with this method since the stat for each day represents the realised profit for that day only. So we fill na values with 0 :param state: Strategy state :param freq_base: Time frequency to resample to :return: Pandas series """ returns = calculate_size_relative_realised_trading_returns(state) non_cumulative_daily_returns = returns.add(1).resample(freq_base).prod(min_count=1).sub(1).fillna(0) return non_cumulative_daily_returns
[docs]def calculate_cumulative_daily_returns(state: State, freq_base: pd.offsets.DateOffset | None = pd.offsets.Day()) -> pd.Series: """Calculates the cumulative daily returns for the strategy over time - Accounts for multiple positions in the same day - If no positions/trades are made on a day, that day will use latest non-zero profit value (forward fill) :param state: Strategy state :param freq_base: Time frequency to resample to :return: Pandas series """ returns = calculate_compounding_realised_trading_profitability(state) _returns = returns.copy() cumulative_daily_returns = _returns.resample(freq_base).last().ffill() return cumulative_daily_returns
[docs]def resample_returns(returns: pd.Series, freq: pd.DateOffset | str) -> pd.Series: """Resample returns series to a longer time frame. - Transform daily returns series to monthly and so on - The returns of each period is the cumulative product of the sub-returns - Does this with a cumulative product transformation Example: We have `returns`: .. code-block:: text 2021-06-01 00:00:00 0.000000 2021-06-01 08:00:00 0.000000 2021-06-01 16:00:00 0.000000 2021-06-02 00:00:00 0.000000 2021-06-02 08:00:00 0.000000 ... 2024-03-08 08:00:00 -0.002334 2024-03-08 16:00:00 -0.012170 2024-03-09 00:00:00 -0.003148 2024-03-09 08:00:00 0.010400 2024-03-09 16:00:00 -0.000277 Make it quarterly: .. code-block:: python # Transform daily returns to monthly for easier comparison freq = QuarterBegin() resampled_returns = resample_returns(returns, freq) Now it is: .. code-block:: text 2021-06-01 0.483777 2021-09-01 0.287191 2021-12-01 0.265714 2022-03-01 -0.035728 2022-06-01 0.194215 2022-09-01 0.059003 2022-12-01 0.062195 2023-03-01 -0.091300 :param returns: Hourly, 8h, etc. returns :param freq: Pandas resample frequency. Use "D" for daily. :return: Returns series where the returns are binned by a new timeframe. """ # https://stackoverflow.com/a/46216956/315168 assert isinstance(returns, pd.Series) # Handle daily specially so that time-to-market etc. analysis # will work for weekly data if freq == "D": period = None if len(returns) > 2: period = (returns.index[1] - returns.index[0]) if True or period is None or period <= pd.Timedelta(hours=24): # From more frequent to daily return (1 + returns).resample(freq).prod() - 1 match period: case pd.Timedelta(days=7): # Distribute returns to each week day equally so that our # time to market stats looks sane forward_filled = returns.resample("D").ffill() / 7 resampled = (1 + forward_filled).resample(freq).prod() - 1 return resampled case _: raise NotImplementedError(f"Unsupported period {period}") else: # All other cases - hit or miss return (1 + returns).resample(freq).prod() - 1
[docs]def calculate_rolling_sharpe( returns: pd.Series, freq: pd.DateOffset | str | None = "D", periods=90, # 90 Days ) -> pd.Series: """Calculate rolling Sharpe ration. - Declining rolling :term:`sharpe` means that the alpha of the :term:`strategy is decaying <strategy decay>`. - `See this QuantStrat post for more information <https://www.quantstart.com/articles/annualised-rolling-sharpe-ratio-in-qstrader/>`__ - `Alternative example implementation <https://github.com/pranaysjha/rolling-sharpe/blob/main/rolling_sharpe.py>`__ Explanation how to interpret rolling sharpe from QuantStrat: It can be seen that the strategy had a significant upward period in 2013 which gives rise to a high trailing annualised Sharpe of 2.5, exceeding 3.5 by the start of 2014. However the strategy performance remained flat through 2014, which caused a gradual reduction in the annualised rolling Sharpe since the volatility of returns was largely similar. By the start of 2015 the Sharpe was between 0.5 and 1.0, meaning more risk was being taken per unit of return at this stage. By the end of 2015 the Sharpe had risen slightly to around 1.5, largely due to some consistent upward gains in the latter half of 2015. Example: .. code-block:: python import plotly.express as px from tradeexecutor.visual.equity_curve import calculate_rolling_sharpe rolling_sharpe = calculate_rolling_sharpe( returns, freq="D", periods=180, ) fig = px.line(rolling_sharpe, title='Strategy rolling Sharpe (6 months)') fig.update_layout(showlegend=False) fig.update_yaxes(title="Sharpe") fig.update_xaxes(title="Time") fig.show() :param returns: Returns series with rolling sharpe :param freq: Returns binning frequency for Sharpe calculations :param periods: How many periods of data we sample for rolling sharpe. """ if freq is not None: resampled_returns = resample_returns(returns, freq) else: resampled_returns = returns rolling = resampled_returns.rolling(window=periods) rolling_sharpe = np.sqrt(periods) * ( rolling.mean() / rolling.std() ) # Remove NA entries at the beginning of the series return rolling_sharpe.dropna()