Source code for tradeexecutor.visual.single_pair

"""Tools to visualise live trading/backtest outcome for strategies trading only one pair."""
import datetime
import logging

from typing import Optional, Union, List, Collection

import plotly.graph_objects as go
import pandas as pd
from plotly.graph_objs.layout import Annotation

from tradeexecutor.state.position import TradingPosition
from tradeexecutor.state.state import State
from tradeexecutor.state.trade import TradeExecution

from tradeexecutor.state.types import PairInternalId
from tradeexecutor.strategy.execution_context import ExecutionContext
from tradeexecutor.visual.technical_indicator import overlay_all_technical_indicators

from tradingstrategy.candle import GroupedCandleUniverse
from tradingstrategy.charting.candle_chart import visualise_ohlcv, make_candle_labels, VolumeBarMode

from tradeexecutor.visual.utils import get_all_positions, get_pair_name_from_first_trade, get_all_text, get_num_detached_and_names, get_pair_base_quote_names, get_start_and_end, export_trades_as_dataframe, visualise_trades, get_num_detached_and_names_no_indicators


logger = logging.getLogger(__name__)


[docs]def get_position_hover_text(p: TradingPosition) -> str: """Get position hover text for Plotly.""" # First draw a position as a re first_trade = p.get_first_trade() last_trade = p.get_last_trade() duration = last_trade.executed_at - first_trade.executed_at started_at = first_trade.started_at.strftime("%Y-%m-%d, %H:%M:%S UTC") ended_at = last_trade.executed_at.strftime("%Y-%m-%d, %H:%M:%S UTC") entry_diff = (first_trade.executed_price - first_trade.planned_price) / first_trade.planned_price entry_dur = (first_trade.executed_at - first_trade.started_at) exit_diff = (last_trade.executed_price - last_trade.planned_price) / last_trade.planned_price exit_dur = (last_trade.executed_at - last_trade.started_at) text = [] text += [ f"Position #{p.position_id}", "" ] # Add remarks if p.is_open(): text += [ "Position currently open", "" ] elif p.is_stop_loss(): text += [ f"Stop loss triggered at: {p.stop_loss:.2f} USD", "" ] else: pass if p.is_closed(): text += [ f"Profit: {p.get_realised_profit_usd():.2f} USD", f"Profit: {p.get_total_profit_percent() * 100:.4f} %", "" ] text += [ f"Entry price: {first_trade.planned_mid_price:.2f} USD (mid price)", f"Entry price: {first_trade.planned_price:.2f} USD (expected)", f"Entry price: {first_trade.executed_price:.2f} USD (executed)", f"Entry slippage: {entry_diff * 100:.4f} %", f"Entry duration: {entry_dur}", "" ] if p.is_closed(): text += [ f"Exit price: {last_trade.planned_price:.2f} USD (expected)", f"Exit price: {last_trade.executed_price:.2f} USD (executed)", f"Exit slippage: {exit_diff * 100:.4f} %", f"Exit duration: {exit_dur}", ] if p.has_buys() or p.has_sells(): if p.has_buys(): text += [ f"Avg buy price: {p.get_average_buy():.2f} USD", ] if p.has_sells(): text += [ f"Avg sell price: {p.get_average_sell():.2f} USD", ] text += [""] if p.is_closed(): text += [ f"Duration: {duration}", f"Started: {started_at} (first trade started)", f"Ended: {ended_at} (last trade executed at)", "" ] else: text += [ f"Started: {started_at} (first trade started)", "" ] return "<br>".join(text)
[docs]def visualise_positions_with_duration_and_slippage( fig: go.Figure, candles: pd.DataFrame, positions: Collection[TradingPosition]): """Visualise trades as coloured area over time. Add arrow indicators to point start and end duration, and slippage. """ # TODO: Figure out how to add a Y coordinate # for Scatter in Plotly paper space max_price = max(candles["high"]) # https://stackoverflow.com/a/58128982/315168 annotations: List[Annotation] = [] buys = { "x": [], "y": [], "text": [], } sells = { "x": [], "y": [], "text": [], } for position in positions: # First draw a position as a re first_trade = position.get_first_trade() last_trade = position.get_last_trade() left_x = pd.Timestamp(first_trade.started_at) right_x = pd.Timestamp(last_trade.executed_at) if position.is_profitable(): colour = "LightGreen" else: colour = "LightPink" # https://plotly.com/python/shapes/ fig.add_vrect( x0=left_x, x1=right_x, xref="x", fillcolor=colour, opacity=0.5, layer="below", line_width=0, ) position_text = get_position_hover_text(position) # Add tooltips as the dot market at the top left corner # of the position fig.add_trace( go.Scatter( x=[left_x + (right_x - left_x) / 2], y=[max_price], hovertext=position_text, hoverinfo="text", showlegend=False, mode='markers', marker={"color": colour, "size": 12} )) # Visualise trades as lines # TODO: Plotly arrow drawing broken for small arrows t: TradeExecution for t in position.trades.values(): colour = "black" fig.add_shape( type="line", x0=t.started_at, x1=t.executed_at, xref="x", y0=t.planned_price, y1=t.executed_price, yref="y", line={ "color": colour, "width": 1, } ) if t.is_buy(): trade_markers = buys else: trade_markers = sells trade_markers["x"].append(t.executed_at) trade_markers["y"].append(t.executed_price) trade_markers["text"].append(str(t)) # Plotly does not render arrows if they are # too small. # # ann = { # "showarrow": True, # "ax": t.started_at, # "axref": "x", # "x": t.executed_at, # "xref": "x", # "ay":t.planned_price, # "ayref": "y", # "y" :t.executed_price, # "yref": "y", # "arrowwidth": 2, # "arrowhead": 5, # "arrowcolor": colour, # } # # annotations.append(ann) # dict( # x= x_end, # y= y_end, # xref="x", yref="y", # text="", # showarrow=True, # axref = "x", ayref='y', # ax= x_start, # ay= y_start, # arrowhead = 3, # arrowwidth=1.5, # arrowcolor='rgb(255,51,0)',) # ) # Add "arrowheads" to trade lines fig.add_trace( go.Scatter( x=buys["x"], y=buys["y"], text=buys["text"], showlegend=False, mode='markers', marker={"symbol": "arrow-right", "color": "black", "size": 12, "line": {"width": 0}}, ) ) fig.add_trace( go.Scatter( x=sells["x"], y=sells["y"], text=sells["text"], showlegend=False, mode='markers', marker={"symbol": "arrow-left", "color": "black", "size": 12, "line": {"width": 0}}, ) ) # TODO: Currently does not work # https://stackoverflow.com/questions/58095322/draw-multiple-arrows-using-plotly-python if annotations: print(annotations) fig.update_layout(annotations=annotations) return fig
[docs]def visualise_single_pair( state: Optional[State], execution_context: ExecutionContext, candle_universe: GroupedCandleUniverse | pd.DataFrame, start_at: Optional[Union[pd.Timestamp, datetime.datetime]] = None, end_at: Optional[Union[pd.Timestamp, datetime.datetime]] = None, pair_id: Optional[PairInternalId] = None, height=800, axes=True, technical_indicators=True, title: Union[str, bool] = True, theme="plotly_white", volume_bar_mode=VolumeBarMode.overlay, vertical_spacing = 0.05, subplot_font_size = 11, relative_sizing: list[float] = None, volume_axis_name: str = "Volume USD", candle_decimals: int = 4, detached_indicators: bool = True, hover_text: bool = True, include_credit_supply_positions: bool = False, ) -> go.Figure: """Visualise single-pair trade execution. :param state: The recorded state of the strategy execution. You must give either `state` or `positions`. :param pair_id: The visualised pair in the case the strategy contains trades for multiple pairs. If the strategy contains trades only for one pair this is not needed. :param candle_universe: Price candles we used for the strategy :param height: Chart height in pixels :param start_at: When the backtest started or when we crop the content :param end_at: When the backtest ended or when we crop the content :param axes: Draw axes labels :param technical_indicators: Extract technical indicators from the state and overlay them on the price action. Only makes sense if the indicators were drawn against the price action of this pair. :param title: Draw the chart title. Set to string to give your own name. Set `True` to use the state name as a title. TODO: True is a legacy option and will be removed. :param theme: Plotly colour scheme to use :param volume_bar_mode: How to draw the volume bars :param vertical_spacing: Vertical spacing between the subplots. Default is 0.05. :param subplot_font_size: Font size of the subplot titles. Default is 11. :param relative_sizing: Optional relative sizes of each plot. Starts with first main candle plot, then the volume plot if it is detached, then the other detached technical indicators. e.g. [1, 0.2, 0.3, 0.3] would mean the second plot is 20% the size of the first, and the third and fourth plots are 30% the size of the first. Remember to account for whether the volume subplot is detached or not. If it is detached, it should take up the second element in the list. :param volume_axis_name: Name of the volume axis. Default is "Volume USD". :param candle_decimals: Number of decimal places to round the candlesticks to. Default is 4. :param detached_indicators: If set, draw detached indicators. Has no effect if `technical_indicators` is False. :param hover_text: If True, show all standard hover text. If False, show no hover text at all. """ assert isinstance(execution_context, ExecutionContext) logger.info("Visualising %s", state) if not (start_at and end_at): start_at, end_at = state.get_strategy_start_and_end() start_at, end_at = get_start_and_end(start_at, end_at) if isinstance(candle_universe, GroupedCandleUniverse): if not pair_id: assert candle_universe.get_pair_count() == 1, "visualise_single_pair() can be only used for a trading universe with a single pair, please pass pair_id or use visualise_multiple_pairs()" pair_id = next(iter(candle_universe.get_pair_ids())) candles = candle_universe.get_candles_by_pair(pair_id) else: # Raw dataframe candles = candle_universe pair_name, base_token, quote_token = get_pair_base_quote_names(state, pair_id) if not start_at: # No trades made, use the first candle timestamp start_at = candle_universe.get_timestamp_range()[0] if not end_at: end_at = candle_universe.get_timestamp_range()[1] logger.info(f"Visualising single pair for pair ({pair_name}) strategy for range {start_at} - {end_at}") # Candles define our diagram X axis # Crop it to the trading range candles = candles.loc[candles["timestamp"].between(start_at, end_at)] candle_start_ts = candles["timestamp"].min() candle_end_ts = candles["timestamp"].max() logger.info(f"Candles are {candle_start_ts} = {candle_end_ts}, having {len(candles)} candles") trades_df = export_trades_as_dataframe( state.portfolio, pair_id, start_at, end_at, include_credit_supply_positions=include_credit_supply_positions, ) labels = make_candle_labels( candles, base_token_name=base_token, quote_token_name=quote_token, candle_decimals=candle_decimals ) fig = _get_grid_with_candles_volume_indicators( state=state, execution_context=execution_context, start_at=start_at, end_at=end_at, height=height, axes=axes, technical_indicators=technical_indicators, title=title, theme=theme, volume_bar_mode=volume_bar_mode, vertical_spacing=vertical_spacing, subplot_font_size=subplot_font_size, relative_sizing=relative_sizing, candles=candles, pair_name=pair_name, labels=labels, volume_axis_name=volume_axis_name, pair_id=pair_id, detached_indicators=detached_indicators, hover_text=hover_text, ) # Add trade markers if any trades have been made if len(trades_df) > 0: visualise_trades(fig, candles, trades_df, include_credit_supply_positions=include_credit_supply_positions) return fig
[docs]def visualise_single_pair_positions_with_duration_and_slippage( state: State, execution_context: ExecutionContext, candles: pd.DataFrame, pair_id: Optional[PairInternalId] = None, start_at: Optional[Union[pd.Timestamp, datetime.datetime]] = None, end_at: Optional[Union[pd.Timestamp, datetime.datetime]] = None, height=800, axes=True, title: Union[bool, str] = True, theme="plotly_white", technical_indicators=True, vertical_spacing = 0.05, relative_sizing: list[float] = None, subplot_font_size: int = 11, ) -> go.Figure: """Visualise performance of a live trading strategy. Unlike :py:func:`visualise_single_pair` attempt to visualise - position duration, as a colored area - more position tooltip text - trade duration (started at - executed) - slippage :param state: The recorded state of the strategy execution. Either live or backtest. :param candle_universe: Price candles we used for the strategy :param pair_id: The visualised pair in the case the strategy contains trades for multiple pairs. If the strategy contains trades only for one pair this is not needed. :param height: Chart height in pixels :param start_at: When the backtest started or when we crop the content :param end_at: When the backtest ended or when we crop the content :param axes: Draw axes labels :param title: Draw the chart title. Set to string to give your own name. Set `True` to use the state name as a title. TODO: True is a legacy option and will be removed. :param technical_indicators: Extract technical indicators from the state and overlay them on the price action. Only makes sense if the indicators were drawn against the price action of this pair. :param theme: Plotly colour scheme to use :param vertical_spacing: Vertical spacing between subplots :param relative_sizing: Optional relative sizes of each plot. Starts with first main candle plot. In this function, there is no volume plot (neither overlayed, hidden, or detached), so the first plot is the candle plot, and the rest are the technical indicator plots. e.g. [1, 0.2, 0.3, 0.3] would mean the second plot is 20% the size of the first, and the third and fourth plots are 30% the size of the first. :param subplot_font_size: Font size of the subplot titles :return: Plotly figure """ assert isinstance(execution_context, ExecutionContext) logger.info("Visualising %s", state) if not (start_at and end_at): start_at, end_at = state.get_strategy_start_and_end() start_at, end_at = get_start_and_end(start_at, end_at) try: first_trade = next(iter(state.portfolio.get_all_trades())) except StopIteration: first_trade = None if first_trade: pair_name = get_pair_name_from_first_trade(first_trade) else: pair_name = None candle_start_ts = candles.iloc[0]["timestamp"] if not start_at: # No trades made, use the first candle timestamp start_at = candle_start_ts candle_end_ts = candles.iloc[-1]["timestamp"] if not end_at: end_at = candle_end_ts logger.info(f"Visualising single pair strategy for range {start_at} - {end_at}") # Candles define our diagram X axis # Crop it to the trading range candles = candles.loc[candles["timestamp"].between(start_at, end_at)] if not pair_id: pair_id = int(candles.iloc[0]["pair_id"]) logger.info(f"Candles are {candle_start_ts} - {candle_end_ts}") positions = get_all_positions(state, pair_id) logging.info("State has %d positions for pair id %d", len(positions), pair_id) # hide volume bar volume_bar_mode = VolumeBarMode.hidden fig = _get_grid_with_candles_volume_indicators( state=state, execution_context=execution_context, start_at=start_at, end_at=end_at, height=height, axes=axes, technical_indicators=technical_indicators, title=title, theme=theme, volume_bar_mode=volume_bar_mode, vertical_spacing=vertical_spacing, subplot_font_size=subplot_font_size, relative_sizing=relative_sizing, candles=candles, pair_name=pair_name, labels=None, ) # Add trade markers if any trades have been made visualise_positions_with_duration_and_slippage(fig, candles, positions) return fig
def _get_grid_with_candles_volume_indicators( *, state: State, execution_context: ExecutionContext, start_at: pd.Timestamp | None, end_at: pd.Timestamp | None, height: int, axes: bool, technical_indicators: bool, title: str | bool, theme: str, volume_bar_mode: VolumeBarMode, vertical_spacing: float, subplot_font_size: int, relative_sizing: list[float], candles: pd.DataFrame, pair_name: str | None, labels: pd.Series, volume_axis_name: str = "Volume USD", pair_id: int | None = None, detached_indicators: bool = True, hover_text: bool = True, ): """Gets figure grid with candles, volume, and indicators overlayed.""" assert isinstance(execution_context, ExecutionContext) title_text, axes_text, volume_text = get_all_text(state.name, axes, title, pair_name, volume_axis_name) # TODO (fix) # without this line, will show detached indicators for all pairs # but with this line involves breaking change # since plot_indicator will require pair argument # plots = [plot for plot in state.visualisation.plots.values() if getattr(plot.pair, "internal_id", None) == pair_id] plots = state.visualisation.plots.values() if technical_indicators: num_detached_indicators, subplot_names = get_num_detached_and_names(plots, execution_context, volume_bar_mode, volume_text, pair_name=None, detached_indicators=detached_indicators) else: num_detached_indicators, subplot_names = get_num_detached_and_names_no_indicators(execution_context, volume_bar_mode, volume_text, pair_name=None) # visualise candles and volume and create empty grid space for technical indicators fig = visualise_ohlcv( candles, height=height, theme=theme, chart_name=title_text, y_axis_name=axes_text, volume_axis_name=volume_text, labels=labels, volume_bar_mode=volume_bar_mode, num_detached_indicators=num_detached_indicators, vertical_spacing=vertical_spacing, relative_sizing=relative_sizing, subplot_names=subplot_names, subplot_font_size=subplot_font_size, ) # Draw EMAs etc. if technical_indicators: overlay_all_technical_indicators( fig, state.visualisation, start_at, end_at, volume_bar_mode, pair_id, detached_indicators=detached_indicators, ) fig.update_yaxes(showspikes=True, spikemode='across', spikesnap='cursor', spikedash='dot', spikethickness=1) if hover_text: fig.update_layout(hovermode='x unified') fig.update_traces(xaxis='x') return fig