Source code for tradingstrategy.utils.token_filter

"""Tokens and trading pair dataset filtering.

- Used to build a tradeable universe for all Uniswap pairs

- Works mainly on trading pairs dataframe - see :py:mod:`tradingstrategy.pairs`

- See also: :py:mod:`tradingstrategy.stablecoin` for different stablecoin whitelists

- For easy filtering "give me tradeable trading pairs universe from these pairs" see :py:func:`filter_default`

"""

import enum
from typing import List, Set, Tuple, Collection

import pandas as pd
import numpy as np

from tradingstrategy.chain import ChainId
from tradingstrategy.exchange import Exchange
from tradingstrategy.stablecoin import ALL_STABLECOIN_LIKE, STABLECOIN_LIKE
from tradingstrategy.types import Slug, TokenSymbol, Percent, IntBasisPoint, PrimaryKey

#: The pair must be quoted in one of these tokens
#:
#: We know can route trades for these tokens
DEFAULT_GOOD_QUOTE_TOKENS = (
    "USDC",
    "USDT",
    "WETH",
    "WMATIC",
    "WAVAX",
    "WBNB",
    "WARB",
)


#: List of DEXes we know are not scams and can be routed
DEFAULT_GOOD_EXCHANGES = ("uniswap-v2", "uniswap-v3", "trader-joe", "sushi", "pancakeswap-2",)


#: Tokens that are somehow wrapped/liquid staking/etc. and derive value from some other underlying token
#:
DERIVATIVE_TOKEN_PREFIXES = ["wst", "os", "3Crv", "gOHM", "st", "bl", "ETH2x"]

# Not all stablecoins, but not desirable trading pairs
AAVE_TOKENS = ('AAAVE', 'AAMMBPTBALWETH', 'AAMMBPTWBTCWETH', 'AAMMDAI', 'AAMMUNIAAVEWETH', 'AAMMUNIBATWETH', 'AAMMUNICRVWETH', 'AAMMUNIDAIUSDC', 'AAMMUNIDAIWETH', 'AAMMUNILINKWETH', 'AAMMUNIMKRWETH', 'AAMMUNIRENWETH', 'AAMMUNISNXWETH', 'AAMMUNIUNIWETH', 'AAMMUNIUSDCWETH', 'AAMMUNIWBTCUSDC', 'AAMMUNIWBTCWETH', 'AAMMUNIYFIWETH', 'AAMMUSDC', 'AAMMUSDT', 'AAMMWBTC', 'AAMMWETH', 'ABAL', 'ABAT', 'ABUSD', 'ACRV', 'ADAI', 'AENJ', 'AETH', 'AGUSD', 'ASTETH', 'AKNC', 'ALINK', 'AMANA', 'AMKR', 'AMAAVE', 'AMDAI', 'AMUSDC', 'AMUSDT', 'AMWBTC', 'AMWETH', 'AMWMATIC', 'ARAI', 'AREN', 'ASNX', 'ASUSD', 'ATUSD', 'AUNI', 'AUSDC', 'AUSDT', 'A1INCH', 'AAGEUR', 'AARB', 'ABTC.B', 'ACBETH', 'ADPI', 'AENS', 'AEURE', 'AEURS', 'AFRAX', 'AGHST', 'AGNO', 'ALDO', 'ALUSD', 'AMAI', 'AMATICX', 'AMETIS', 'AOP', 'ARETH', 'ARPL', 'ASAVAX', 'ASDAI', 'ASTG', 'ASTMATIC', 'ASUSHI', 'AUSDBC', 'AUSDC.E', 'AWAVAX', 'AWBTC', 'AWETH', 'AWMATIC', 'AWSTETH', 'AXSUSHI', 'AYFI', 'AZRX', 'AM3CRV')

# ETH liquid staking tokens.
# Derivates of ETH
LIQUID_RESTAKING_TOKENS = ('WSTETH', 'WEETH', 'EETH', 'INETH', 'INSFRXETH', 'INANKRETH', 'INCBETH', 'INETHX', 'INLSETH', 'INMETH', 'INOETH', 'INOSETH', 'INRETH', 'INSTETH', 'INSWETH', 'INWBETH', 'RSETH', 'EZETH', 'RSWETH')

# Staking derivates
ETH_2_STAKING = ('ANKRETH', 'BETH', 'CBETH', 'GETH', 'STETH', 'SFRXETH', 'OSETH', 'RETH')

#: All derivative tokens
#:
#: See also `DERIVATIVE_TOKEN_PREFIXES`
#:
#: converted to set for faster lookup
#:
ALL_DERIVATIVE_TOKENS = set(AAVE_TOKENS + LIQUID_RESTAKING_TOKENS + ETH_2_STAKING)

#: Tokens that are known to rebase
#:
REBASE_TOKENS = ["OHM", "KLIMA"]

#: Trading pair native quote tokens we need to deal with
#:
POPULAR_NATIVE_TOKENS = {
    "WETH",
    "WAVAX",
    "WMATIC",
    "WBNB",
    "WBTC",
}

#: Popular quote tokens in trading pairs.
#:
#: Asking data for these tokens may yield tens of thousands of results.
#:
#: Used by
#:
#:
POPULAR_QUOTE_TOKENS = POPULAR_NATIVE_TOKENS | STABLECOIN_LIKE


[docs]def filter_for_base_tokens( pairs: pd.DataFrame, base_token_addresses: List[str] | Set[str] ) -> pd.DataFrame: """Filter dataset so that it only contains data for the trading pairs that have a certain base token. Useful as a preprocess step for creating :py:class:`tradingstrategy.lending.LendingUniverse` Example: .. code-block:: python client = persistent_test_client exchange_universe = client.fetch_exchange_universe() quote_tokens = { "0x2791bca1f2de4661ed88a30c99a7a9449aa84174", # USDC polygon "0xc2132d05d31c914a87c6611c10748aeb04b58e8f", # USDT polygon } pairs_df = client.fetch_pair_universe().to_pandas() # Find out all volatile pairs traded against USDC and USDT on Polygon pairs_df = filter_for_chain(pairs_df, ChainId.polygon) pairs_df = filter_for_stablecoins(pairs_df, StablecoinFilteringMode.only_volatile_pairs) pairs_df = filter_for_quote_tokens(pairs_df, quote_tokens) # Create lending universe and trading universe with the cross section of # - Available assets in the lending protocols # - Asset we can trade lending_reserves = client.fetch_lending_reserve_universe() pairs_df = filter_for_base_tokens(pairs_df, lending_reserves.get_asset_addresses()) pair_universe = PandasPairUniverse(pairs_df, exchange_universe=exchange_universe) # Lending reserves have around ~320 individual trading pairs on Polygon across different DEXes assert 1 < pair_universe.get_count() < 1_000 eth_usdc = pair_universe.get_pair_by_human_description((ChainId.polygon, "uniswap-v3", "WETH", "USDC")) :param quote_token_addresses: List of Ethereum addresses of the tokens. Lowercased, non-checksummed. :return: DataFrame with trading pairs filtered to match quote token condition """ assert type(base_token_addresses) in (list, set), f"Received: {type(base_token_addresses)}: {base_token_addresses}" for addr in base_token_addresses: assert addr == addr.lower(), f"Address was not lowercased {addr}" our_pairs: pd.DataFrame = pairs.loc[ (pairs['token0_address'].isin(base_token_addresses) & (pairs['token0_symbol'] == pairs['base_token_symbol'])) | (pairs['token1_address'].isin(base_token_addresses) & (pairs['token1_symbol'] == pairs['base_token_symbol'])) ] return our_pairs
[docs]def filter_for_quote_tokens( pairs: pd.DataFrame, quote_token_addresses: List[str] | Set[str] ) -> pd.DataFrame: """Filter dataset so that it only contains data for the trading pairs that have a certain quote tokens. Useful as a preprocess step for creating :py:class:`tradingstrategy.candle.GroupedCandleUniverse` or :py:class:`tradingstrategy.liquidity.GroupedLiquidityUniverse`. You might, for example, want to construct a trading universe where you have only BUSD pairs. Example: .. code-block:: python exchange_universe = client.fetch_exchange_universe() quote_tokens = { "0x2791bca1f2de4661ed88a30c99a7a9449aa84174", # USDC polygon "0xc2132d05d31c914a87c6611c10748aeb04b58e8f", # USDT polygon } pairs_df = client.fetch_pair_universe().to_pandas() # Find out all volatile pairs traded against USDC and USDT on Polygon pairs_df = filter_for_chain(pairs_df, ChainId.polygon) pairs_df = filter_for_stablecoins(pairs_df, StablecoinFilteringMode.only_volatile_pairs) pairs_df = filter_for_quote_tokens(pairs_df, quote_tokens) pairs_df = filter_for_quote_tokens(pairs_df, lending_reserves.get_asset_addresses()) pair_universe = PandasPairUniverse(pairs_df, exchange_universe=exchange_universe) :param quote_token_addresses: List of Ethereum addresses of the tokens. Lowercased, non-checksummed. :return: DataFrame with trading pairs filtered to match quote token condition """ assert type(quote_token_addresses) in (list, set), f"Received: {type(quote_token_addresses)}: {quote_token_addresses}" for addr in quote_token_addresses: assert addr == addr.lower(), f"Address was not lowercased {addr}" our_pairs: pd.DataFrame = pairs.loc[ (pairs['token0_address'].isin(quote_token_addresses) & (pairs['token0_symbol'] == pairs['quote_token_symbol'])) | (pairs['token1_address'].isin(quote_token_addresses) & (pairs['token1_symbol'] == pairs['quote_token_symbol'])) ] return our_pairs
[docs]def filter_for_blacklisted_tokens( pairs: pd.DataFrame, blacklisted_tokens: List[str] | Set[str] ) -> pd.DataFrame: """Remove blacklisted tokens from the trading pair set. Useful as a preprocess step for creating trading pairs that cause issues in open-ended strategies. Example: .. code-block:: python avoid_backtesting_tokens = { # MKR market is created and pulled out, # leaving us no good price source in the dataset # https://tradingstrategy.ai/trading-view/ethereum/uniswap-v3/mkr-usdc-fee-5#7d "MKR", # Not sure what's going on with this token, # price action and TVL not normal though 100k liquidity # https://tradingstrategy.ai/trading-view/ethereum/uniswap-v3/sbio-usdc-fee-30#1d "SBIO", # Same problems as MKR, # it has historical TVL that then gets pulled down to zero # https://tradingstrategy.ai/trading-view/ethereum/uniswap-v3/ldo-usdc-fee-30 "LDO", # Trading jsut stops (though there is liq left) # https://tradingstrategy.ai/trading-view/ethereum/uniswap-v3/id-usdc-fee-30 "ID", # Disappearing market, as above "DMT", "XCHF", "FLC", "GF", "CVX", "MERC", "ICHI", "DOVU", "DOVU[eth]", "DHT", "EWIT", # Abnormal price during the rebalance # adjust_position() does not have good price checks / # how to recover in the case price goes hayware after opening the position "MAP", "TRX", "LAI", } tradeable_pairs_df = client.fetch_pair_universe().to_pandas() tradeable_pairs_df = filter_for_blacklisted_tokens(tradeable_pairs_df, avoid_backtesting_tokens) print("Pairs without blacklisted base token", len(tradeable_pairs_df)) :param blacklisted_tokens: Blacklisted token symbols or addresses. :return: DataFrame with trading pairs filtered to match quote token condition """ assert type(blacklisted_tokens) in (list, set), f"Received: {type(blacklisted_tokens)}: {blacklisted_tokens}" blacklisted_tokens = [t.lower() for t in blacklisted_tokens] blacklisted_mask = \ pairs['token0_address'].isin(blacklisted_tokens) | \ pairs['token0_symbol'].str.lower().isin(blacklisted_tokens) | \ pairs['token1_address'].isin(blacklisted_tokens) | \ pairs['token1_symbol'].str.lower().isin(blacklisted_tokens) return pairs[~blacklisted_mask]
[docs]def filter_for_nonascii_tokens( pairs: pd.DataFrame, ) -> pd.DataFrame: """Remove tokens with unprintable characters - Emojis - Some crap tokens like 20SML025�������� - There should be no legit tokens with non-ASCII names :return: DataFrame with trading pairs filtered to match quote token condition """ def has_non_ascii(text): return any(ord(char) > 127 for char in text) def my_filter(row): return has_non_ascii(row.token0_symbol) or has_non_ascii(row.token1_symbol) blacklisted_mask = pairs.apply(my_filter, axis=1) return pairs[~blacklisted_mask]
[docs]class StablecoinFilteringMode(enum.Enum): """How to filter pairs in stablecoin filtering. See :py:func:`filter_for_stablecoins`. """ #: Stable-stable pairs only_stablecoin_pairs = "only_stablecoin_pairs" #: Volatile pairs #: #: Usually this is "tradeable" pairs #: only_volatile_pairs = "only_volatile_pairs" #: Any trading pair all_pairs = "all_pairs"
[docs]def filter_for_stablecoins(pairs: pd.DataFrame, mode: StablecoinFilteringMode) -> pd.DataFrame: """Filter dataset so that it only contains data for the trading pairs that are either stablecoin pairs or not. Trading logic might not be able to deal with or does not want to deal with stable -> stable pairs. Trading stablecoin to another does not make sense, unless you are doing high volume arbitration strategies. Uses internal stablecoin list from :py:mod:`tradingstrategy.stablecoin`. - For code example see :py:func:`filter_for_quote_tokens` - See also :py:class:`StablecoinFilteringMode` Example: .. code-block:: python from tradingstrategy.pair import filter_for_stablecoins, StablecoinFilteringMode # Remove pairs with expensive 1% fee tier # Remove stable-stable pairs tradeable_pairs_df = pairs_df.loc[pairs_df["fee"] <= 30] tradeable_pairs_df = filter_for_stablecoins(tradeable_pairs_df, StablecoinFilteringMode.only_volatile_pairs) # Narrow down candle data to pairs that are left after filtering candles_df = candles_df.loc[candles_df["pair_id"].isin(tradeable_pairs_df["pair_id"])] print(f"We have {len(tradeable_pairs_df)} tradeable pairs") :param pairs: DataFrame of of :py:class:`tradingstrategy.pair.DEXPair` :param mode: Are we looking for stablecoin pairs or volatile pairs :return: Filtered DataFrame """ assert isinstance(mode, StablecoinFilteringMode) if mode == StablecoinFilteringMode.all_pairs: return pairs if mode == StablecoinFilteringMode.only_stablecoin_pairs: our_pairs: pd.DataFrame = pairs.loc[ (pairs['token0_symbol'].isin(ALL_STABLECOIN_LIKE) & pairs['token1_symbol'].isin(ALL_STABLECOIN_LIKE)) ] else: # https://stackoverflow.com/a/35939586/315168 our_pairs: pd.DataFrame = pairs.loc[ ~(pairs['token0_symbol'].isin(ALL_STABLECOIN_LIKE) & pairs['token1_symbol'].isin(ALL_STABLECOIN_LIKE)) ] return our_pairs
[docs]def filter_for_derivatives(pairs: pd.DataFrame, derivatives=False) -> pd.DataFrame: """Detect derivative token. - These tokens do not present underlying trading pair, but derive their value from some other token e.g. `stETH` in `stETH/ETH` - They behave as stable/stable pairs :param derivatives: Set false to exclude derivative token, True to have only them. """ assert isinstance(pairs, pd.DataFrame) def row_filter(row): if derivatives: return is_derivative(row["token0_symbol"]) or is_derivative(row["token1_symbol"]) else: return (not is_derivative(row["token0_symbol"])) and (not is_derivative(row["token1_symbol"])) df = pairs[pairs.apply(row_filter, axis=1)] return df
[docs]def filter_for_rebases(pairs: pd.DataFrame, rebase=False) -> pd.DataFrame: """Detect rebase token. - These tokens have dynamic balance and cannot be traded as is - Example: `OHM`, `KLIMA` :param rebase: Set false to exclude derivative token, True to have only them. """ assert isinstance(pairs, pd.DataFrame) def row_filter(row): if rebase: return is_rebase(row["token0_symbol"]) or is_rebase(row["token1_symbol"]) else: return (not is_rebase(row["token0_symbol"])) and (not is_rebase(row["token1_symbol"])) df = pairs[pairs.apply(row_filter, axis=1)] return df
[docs]def filter_for_chain( pairs: pd.DataFrame, chain_id: ChainId, ): """Extract trading pairs for specific blockchain. - For code example see :py:func:`filter_for_quote_tokens` """ assert isinstance(chain_id, ChainId) return pairs.loc[pairs["chain_id"] == chain_id.value]
[docs]def filter_for_exchange( pairs: pd.DataFrame, exchange_slug: Slug | Set[Slug] | Tuple[Slug] | List[Slug], ): """Extract trading pairs for specific exchange(s). Example: .. code-block:: python # Pick only pairs traded on Uniswap v3 df = filter_for_exchange(df, "uniswap-v3") With two exchanges: # Pick only pairs traded on Uniswap v3 or Quickswap df = filter_for_exchange(df, {"uniswap-v3", "quickswap"}) """ if type(exchange_slug) == str: return pairs.loc[pairs["exchange_slug"] == exchange_slug] elif type(exchange_slug) in (tuple, set, list): return pairs.loc[pairs["exchange_slug"].isin(exchange_slug)] else: raise AssertionError(f"Unsupported exchange slug filter: {exchange_slug.__class__}")
[docs]def filter_for_exchanges(pairs: pd.DataFrame, exchanges: Collection[Exchange]) -> pd.DataFrame: """Filter dataset so that it only contains data for the trading pairs from a certain exchange. Useful as a preprocess step for creating :py:class:`tradingstrategy.candle.GroupedCandleUniverse` or :py:class:`tradingstrategy.liquidity.GroupedLiquidityUniverse`. """ exchange_ids = [e.exchange_id for e in exchanges] our_pairs: pd.DataFrame = pairs.loc[ (pairs['exchange_id'].isin(exchange_ids)) ] return our_pairs
[docs]def filter_for_exchange_ids(pairs: pd.DataFrame, exchange_ids: Collection[PrimaryKey]) -> pd.DataFrame: """Filter dataset so that it only contains data for the trading pairs from a certain exchange. Use primary keys for filtering. """ our_pairs: pd.DataFrame = pairs.loc[ (pairs['exchange_id'].isin(exchange_ids)) ] return our_pairs
[docs]def filter_for_trading_fee(pairs: pd.DataFrame, fee: Percent) -> pd.DataFrame: """Select only pairs with a specific trading fee. Filter pairs based on :py:term:`AMM` :py:term:`swap` fee. :param fee: Fee as the floating point. For example ``0.0005`` for :term:`Uniswap` 5 BPS fee tier. """ assert 0 < fee < 1, f"Got fee: {fee}" int_fee = int(fee * 10_000) our_pairs: pd.DataFrame = pairs.loc[ (pairs['fee'] == int_fee) ] return our_pairs
[docs]def filter_pairs_default( pairs_df: pd.DataFrame, verbose_print=lambda x, y: print(x, y), max_trading_pair_fee_bps: IntBasisPoint | None = 100, blacklisted_token_symbols: Collection[TokenSymbol] | None = None, good_quote_tokes: Collection[TokenSymbol] = DEFAULT_GOOD_QUOTE_TOKENS, exchanges: Collection[Exchange] | None = None, exchange_ids: Collection[PrimaryKey] | None = None, pair_ids_in_candles: Collection[PrimaryKey] | pd.Series | None = None, chain_id: ChainId | None = None, ) -> pd.DataFrame: """Filter out pairs that are not interested for trading. - Does not perform liquidity filtering you need to perform separately This includes - Non-volatile pairs (stETH/ETH) - :py:func:`filter_for_stablecoins` - Derivate pairs (stETH/ETH) - :py:func:`filter_for_derivatives` - Rebasing tokens (OHM, Klima) :param max_trading_pair_fee_bps: Limit to pairs with less pool fee than this :param verbose_print: Output function to print out information about narroving the dataset :param good_quote_tokes: Only allow trading pairs that trade against these tokens. :param blacklisted_token_symbols: Avoid these base tokens for some reason or another :param exchanges: Limit trading pairs to these dexes. Use Exchange objects. :param exchange_ids: Limit trading pairs to these dexes. Use Exchange primary keys. :param pair_ids_in_candles: Filter based on loaded candle data. Remove trading pairs that do not appear in the candle data. :param chain_ids: Take trading pairs only on these chains :return: DataFrame for trading pairs """ if max_trading_pair_fee_bps: assert type(max_trading_pair_fee_bps) == int, f"max_trading_pair_fee_bps must be int" tradeable_pairs_df = pairs_df verbose_print(f"Pairs in the input dataset", len(tradeable_pairs_df)) if chain_id: tradeable_pairs_df = filter_for_chain(pairs_df, chain_id) verbose_print(f"Pairs on chain {chain_id.get_slug()}", len(tradeable_pairs_df)) # Remove pairs with expensive 1% fee tier # Remove stable-stable pairs if max_trading_pair_fee_bps: tradeable_pairs_df = tradeable_pairs_df.loc[pairs_df["fee"] <= max_trading_pair_fee_bps] verbose_print("Pairs having a good fee", len(tradeable_pairs_df)) if pair_ids_in_candles: tradeable_pairs_df = tradeable_pairs_df.loc[tradeable_pairs_df["pair_id"].isin(pair_ids_in_candles)] verbose_print("Pairs with candle data", len(tradeable_pairs_df)) if exchanges: tradeable_pairs_df = filter_for_exchanges(tradeable_pairs_df, exchanges) verbose_print("Pairs matching exchange", len(tradeable_pairs_df)) if exchange_ids: tradeable_pairs_df = filter_for_exchange_ids(tradeable_pairs_df, exchange_ids) verbose_print("Pairs matching exchange", len(tradeable_pairs_df)) tradeable_pairs_df = filter_for_stablecoins(tradeable_pairs_df, StablecoinFilteringMode.only_volatile_pairs) verbose_print("Pairs that are not stable-stable", len(tradeable_pairs_df)) tradeable_pairs_df = filter_for_derivatives(tradeable_pairs_df) verbose_print("Pairs that are not derivative tokens", len(tradeable_pairs_df)) tradeable_pairs_df = filter_for_rebases(tradeable_pairs_df) verbose_print("Pairs that are not rebase tokens", len(tradeable_pairs_df)) tradeable_pairs_df = tradeable_pairs_df.loc[tradeable_pairs_df["quote_token_symbol"].isin(good_quote_tokes)] verbose_print("Pairs with good quote token", len(tradeable_pairs_df)) if blacklisted_token_symbols: tradeable_pairs_df = filter_for_blacklisted_tokens(tradeable_pairs_df, blacklisted_token_symbols) verbose_print("Pairs without blacklisted base token", len(tradeable_pairs_df)) tradeable_pairs_df = filter_for_nonascii_tokens(tradeable_pairs_df) verbose_print("Pairs with clean ASCII token name", len(tradeable_pairs_df)) return tradeable_pairs_df
[docs]def is_derivative(token_symbol: TokenSymbol) -> bool: """Identify common derivate tokens. - They will have the same base value e.g. wstETH and ETH :return: True if token symbol matches a common known derivative token symbol pattern """ assert isinstance(token_symbol, str), f"We got {token_symbol}" if token_symbol.upper() in ALL_DERIVATIVE_TOKENS: return True return any(token_symbol.startswith(prefix) for prefix in DERIVATIVE_TOKEN_PREFIXES)
[docs]def is_rebase(token_symbol: TokenSymbol) -> bool: """Identify common rebase tokens. - They will have dynamic balance and not suitable for trading as is - E.g. `OHM` :return: True if token symbol matches a common known derivative token symbol pattern """ assert isinstance(token_symbol, str), f"We got {token_symbol}" return token_symbol.upper() in REBASE_TOKENS
[docs]def add_base_quote_address_columns(pairs_df: pd.DataFrame) -> pd.DataFrame: """Add base_token_address and quote_token_address to pairs data. - The server gives us a hint, but we can decide our own base token/quote token order at the client side - This function follows the hint from the server :return: The same pairs DataFrame, with new columns `base_token_address` and `quote_token_address`. """ token0_is_base_token_mask = pairs_df["base_token_symbol"] == pairs_df["token0_symbol"] pairs_df["base_token_address"] = np.where(token0_is_base_token_mask, pairs_df["token0_address"], pairs_df["token1_address"]) pairs_df["quote_token_address"] = np.where(~token0_is_base_token_mask, pairs_df["token0_address"], pairs_df["token1_address"]) return pairs_df
[docs]def deduplicate_pairs_by_volume(pairs_df: pd.DataFrame) -> pd.DataFrame: """Deduplicate trading pairs. - For each base token, we might have several trading pairs with different quote tokens (WETH, USDC) and different DEXes (uniswap-v2, uniswap-v3) - In this function, we deduplicate the incoming trading pairs so that we pick one with the best volume (volume 24h USD, whatever was recorded at the time of creating the pairs dataset). - Note that a smarter method of doing this is to check trading fee + liquidity, but for that we may need to download the liquidity universe - this method using "some past" record of volume is simpler Example: .. code-block:: python chain_id = ChainId.ethereum category = "Meme" client = Client.create_live_client(api_key=os.environ['TRADING_STRATEGY_API_KEY']) coingecko_universe = CoingeckoUniverse.load() logger.info("Coingecko universe is %s", coingecko_universe) pairs_df = client.fetch_pair_universe().to_pandas() category_df = categorise_pairs(coingecko_universe, pairs_df) # Get all trading pairs that are memecoin, across all coingecko data mask = category_df["category"] == category meme_pair_ids = category_df[mask]["pair_id"] logger.info("Memecoin pairs across all chain %s", len(meme_pair_ids)) # From these pair ids, see what trading pairs we have on Ethereum mainnet pairs_df = pairs_df[pairs_df["pair_id"].isin(meme_pair_ids) & (pairs_df["chain_id"] == chain_id.value)] logger.info("Ethereum filtered memecoins %s", len(pairs_df)) pairs_universe = PandasPairUniverse(pairs_df) logger.info("Example pairs:") for pair in list(pairs_universe.iterate_pairs())[0:10]: logger.info(" Pair: %s", pair) # SHIB - WETH (0x811beed0119b4afce20d2583eb608c6f7af1954f) at exchange 1 on ethereum> # SHIB - USDT (0x773dd321873fe70553acc295b1b49a104d968cc8) at exchange 1 on ethereum> # LEASH - WETH (0x874376be8231dad99aabf9ef0767b3cc054c60ee) at exchange 1 on ethereum> # LEASH - DAI (0x761d5dca312484036de12ba22b660a2e5b1aa211) at exchange 1 on ethereum> # Deduplicate trading pairs # - Choose the best pair with the best volume pairs_df = deduplicate_pairs_by_volume(pairs_df) pairs_universe = PandasPairUniverse(pairs_df) logger.info("Example of deduplicated pairs:") for pair in list(pairs_universe.iterate_pairs())[0:10]: logger.info(" Pair: %s", pair) # INFO:__main__: Pair: <Pair #37836 SHIB - WETH (0x24d3dd4a62e29770cf98810b09f89d3a90279e7a) at exchange 22 on ethereum> # INFO:__main__:Example of deduplicated pairs: # INFO:__main__: Pair: <Pair #3018988 PEPE - WETH (0x11950d141ecb863f01007add7d1a342041227b58) at exchange 3681 on ethereum> # INFO:__main__: Pair: <Pair #3047249 TURBO - WETH (0x8107fca5494375fc743a9fc4d4844353a1af3d94) at exchange 3681 on ethereum> # INFO:__main__: Pair: <Pair #3842242 Neiro - WETH (0x15153da0e9e13cfc167b3d417d3721bf545479bb) at exchange 3681 on ethereum> # INFO:__main__: Pair: <Pair #3376429 MEME - WETH (0x70cf99553471fe6c0d513ebfac8acc55ba02ab7b) at exchange 3681 on ethereum> logger.info( "Total %d pairs to trade on %s for category %s", len(pairs_df), chain_id.name, category, ) :return: The returning pairs DataFrame is sorted by volume """ # Normalise volume pairs_df["volume"] = pairs_df["buy_volume_30d"] + pairs_df["sell_volume_30d"] # We sort by volume and then filter out pairs_df = pairs_df.sort_values(by="volume", ascending=False) included_set = set() def _filter_by_base(row: pd.Series): base_token_symbol = row["base_token_symbol"] if base_token_symbol not in included_set: included_set.add(base_token_symbol) return True return False pairs_df = pairs_df[pairs_df.apply(_filter_by_base, axis=1)] return pairs_df